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There is a compendium of definitions and formulae in the appendix, which
you are free to use without comment.

Question 1. [22 marks] Let C be the curve

C = {(x, y) ∈ R2 | (x+ 3)2 + 4(y− 2)2 = 16}

and consider the following parametrisation of C:

γ : R → R2, γ(t) = (−3+ 4 cos t, 2+ 2 sin t).

(a) Find the curvature of C at the point (−3, 0). [6]

(b) Sketch the image of γ, and indicate the point (−3, 0) on your sketch. [5]

(c) At which points of C does its curvature achieve its maximum value? Justify
your answer(s) computationally. [4]

(d) Compute the curve integral ∫
C

F · ds,

where C has the clockwise orientation, and where F is the vector field given by

F(x, y) = (−y, x)(x,y), (x, y) ∈ R2. [7]

(a) [Seen similar] Direct computations for γ yield

γ ′(t) = (−4 sin t, 2 cos t), γ ′′(t) = (−4 cos t,−2 sin t), [2 point]

so the curvature of γ satisfies

κγ(t) =
|(−4 sin t)(−2 sin t) − (2 cos t)(−4 cos t)|

|(−4 sin t, 2 cos t)|3

=
8

(4 cos2 t+ 16 sin2 t)
3
2

=
1

(1+ 3 sin2 t)
3
2

. [2 points]

Observing that
(−3, 0) = γ

(
−
π

2

)
.

then by definition, the curvature at (−3, 0) is

κC(−3, 0) = κγ

(
−
π

2

)
=

1

(1+ 3)
3
2

=
1

8
. [2 points]

(b) [Seen similar] γ is drawn in red [4 points]; the point (−3, 0) is in green [1 point]:

(Here, one needs not be so exact—getting the general shape of γ along with the
positions of a few key values of γ would suffice.)
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(c) [Unseen] We begin with the formula for the curvature of γ:

κγ(t) =
1

(1+ 3 sin2 t)
3
2

.

Note that κγ is maximised when sin2 t = 0; this occurs when t = 0, π [2 points].

As as result, the curvature of C is maximised at the points

γ(0) = (1, 2), γ(π) = (−7, 2). [2 point]

(d) [Seen similar] The first step is to obtain a suitable parametrisation for integration.
For this, we reduce the domain so that it is injective and still covers (almost) all of C:

λ : (0, 2π) → R2, λ(t) = (−3+ 4 cos t, 2+ 2 sin t).

Note, however, that λ still has the wrong orientation [3 points].

Next, we compute the necessary quantities:

F(λ(t)) = (−2− 2 sin t,−3+ 4 cos t)(−3+4 cos t,2+2 sin t),
λ ′(t) = (−4 sin t, 2 cos t). [2 point]

Since λ has the wrong orientation, then:∫
C

F · ds = −

∫ 2π

0

[(−2− 2 sin t,−3+ 4 cos t) · (−4 sin t, 2 cos t)]dt

= −

∫ 2π

0

(8 sin t+ 8 sin2 t− 6 cos t+ 8 cos2 t)dt

= −

∫ 2π

0

(8+ 8 sin t− 6 cos t)dt

= −16π. [2 points]
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Question 2. [14 marks]

(a) Compute the tangent line at t = 0 to the parametric trefoil knot:

γ : R → R3, γ(t) = (sin t+ 2 sin(2t), cos t− 2 cos(2t),− sin(3t)). [5]

(b) Determine whether the following parametric curve is regular:

α : R → R2, α(t) = ((t− 1)3, (t− 1)2).

Justify your answer. [5]

(c) Give a parametrisation of the curve,

Q = {(x, y) ∈ R2 | x4 + (y+ 2)4 = 1},

that passes through the point (0,−1). Be sure to specify its domain. [4]

(a) [Seen similar] Differentiating γ yields

γ ′(t) = (cos t+ 4 cos(2t),− sin t+ 4 sin(2t),−3 cos(3t)).

In particular, at t = 0, we have that

γ(0) = (0,−1, 0), γ ′(0) = (5, 0,−3). [3 points]

Thus, by definition,

Tγ(0) =
{
s · γ ′(0)γ(0)

∣∣ s ∈ R
}

=
{
s · (5, 0,−3)(0,−1,0)

∣∣ s ∈ R
}

. [2 points]

(b) [Seen similar] Taking the derivative of α yields

α ′(t) = (3(t− 1)2, 2(t− 1)). [1 point]

Note in particular that α ′(1) = (0, 0) (and hence |α ′(1)| = 0) [3 points].

As a result, α is not regular [1 point].

(c) [Seen similar] The most straightforward method is to set the parameter to be t = x.
Using the defining equation for Q, we see that (for t ∈ (−1, 1))

(y+ 2)4 = 1− x4 = 1− t4, y = ±(1− t4)
1
4 − 2.

To make sure the parametrisation passes through (0,−1), we most choose “+” in the
above. As a result, one correct parametrisation is given by

λ : (−1, 1) → R2, [1 point]

λ(t) =
(
t, (1− t4)

1
4 − 2

)
. [3 points]

(In particular, observe that λ(0) = (0,−1).)
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Question 3. [23 marks] Let S denote the surface of revolution given by

S = {(x, y, z) ∈ R3 | x4 = y2 + z2, 0 < x < 2}

and consider the following parametrisation of S:

σ : (0, 2)× R → R3, σ(u, v) = (u, u2 cos v, u2 sin v).

(a) Compute the tangent plane to S at the point (1, 0, 1). [5]

(b) Sketch the image of σ. On your sketch, draw (i) a path obtained by holding v

constant and varying u, and (ii) a path obtained by holding u constant and
varying v. [6]

(c) Find another parametrisation of S that generates the opposite orientation to
the one generated by σ. Be sure to specify its domain. [4]

(d) Compute the surface integral ∫∫
S

HdA,

where H is the function

H : R3 → R, H(x, y, z) =
√
1+ 4x2. [8]

(a) [Seen similar] First, notice that

(1, 0, 1) = σ
(
1,

π

2

)
. [1 point]

The partial derivatives of σ satisfy

∂1σ(u, v) = (1, 2u cos v, 2u sin v), ∂2σ(u, v) = (0,−u2 sin v, u2 cos v),

∂1σ
(
1,

π

2

)
= (1, 0, 2), ∂2σ

(
1,

π

2

)
= (0,−1, 0). [3 points]

Thus, by definition, the tangent plane is given by

T(1,0,1)S = Tσ

(
1,

π

2

)
=

{
a · (1, 0, 2)(1,0,1) + b · (0,−1, 0)(1,0,1)

∣∣a, b ∈ R
}

. [1 point]

(b) [Seen similar] The image of σ is drawn in the diagram below [4 points]; examples of
level paths are drawn in (i) blue and (ii) purple, respectively [2 points].

(Here, one needs not be so exact—getting the general shape of σ along with the
positions of a few key values of σ would suffice.)
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(c) [Seen similar] This can be constructed by switching the roles of u and v:

ρ : R× (0, 2) → R3, [1 point]
ρ(u, v) = σ(v, u) = (v, v2 cosu, v2 sinu). [3 points]

(d) [Seen similar] First, we parametrise by restricting the domain of σ:

σ : (0, 2)× (0, 2π) → R3, σ(u, v) = (u, u2 cos v, u2 sin v).

Note that σ is now injective but still covers almost all of S [2 points].

Next, we collect the necessary intermediate computations:

H(σ(u, v)) =
√
1+ 4u2,

|∂1σ(u, v)× ∂2σ(u, v)| = u2|(2u,− cos v,− sin v)|

= u2
√

1+ 4u2. [3 points]

Combining the above, we compute that∫∫
S

HdA =

∫∫
(0,2)×(0,2π)

√
1+ 4u2 · u2

√
1+ 4u2 dudv

=

∫ 2π

0

dv

∫ 2

0

(u2 + 4u4)du

= 2π

(
8

3
+

128

5

)
. [3 points]
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Question 4. [13 marks]

(a) Let f denote the following vector-valued function:

f : R2 → R2, f (x, y) = (xy2, x2y).

Find the directional derivative of f at the point (1, 1) and in the direction (−1, 2). [4]

(b) Explain (informally) why the surface integral of a real-valued function over a
Möbius band well-defined, but the surface integral of a vector field over the same
Möbius band is not well-defined. [4]

(c) Show that the following set is a surface:

Z = {(x, y, z) ∈ R3 | x = y3 + z4}. [5]

(a) [Seen similar] Differentiating, we obtain that

∂1f (x, y) = (y2, 2xy), ∂2f (x, y) = (2xy, x2),
∂1f (1, 1) = (1, 2), ∂2f (1, 1) = (2, 1). [2 points]

As a result, the directional derivative satisfies

df ((−1, 2)(1,1)) = −1 · ∂1f (1, 1) + 2 · ∂2f (1, 1)
= (3, 0). [2 points]

(b) [Unseen] By definition, integrals of real-valued functions over surfaces are generally
well-defined, but integrals of vector fields are only well-defined when the surface is
assigned an orientation [2 points]. The Möbius band fails to be orientable [2 points].

(c) [Seen similar] Note that Z can be expressed as

Z = {(x, y, z) ∈ R3 | h(x, y, z) = 0},

where h is the function defined as

h : R3 → R, h(x, y, z) = x− y3 − z4. [2 point]

Since the gradient of h satisfies, for any (x, y, z) ∈ R3,

∇h(x, y, z) = (1,−3y2,−4z3)(x,y,z) ̸= (0, 0, 0)(x,y,z), [2 points]

it follows from the level set theorem that Z is indeed a surface [1 point].
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Question 5. [15 marks] Using the method of Lagrange multipliers, find the
maximum value of the function

g : R2 → R, g(x, y) = x2 + y2,
subject to the constraint

(x− 1)2 + (y+ 1)2 = 1.
Also, find all the points at which this maximum value is achieved. [15]

[Seen similar] Let h denote the function corresponding to the constraint:
h : R2 → R, h(x, y) = (x− 1)2 + (y+ 1)2.

First, we compute the gradients of g and h:
∇g(x, y) = (2x, 2y)(x,y), ∇h(x, y) = (2(x− 1), 2(y+ 1))(x,y).

The method of Lagrange multipliers indicates that we must solve the system,
2x = λ · 2(x− 1), 2y = λ · 2(y+ 1), (x− 1)2 + (y+ 1)2 = 1. [4 points]

We begin with the first two equations in the system. First, if λ = 0, then we have
x = y = 0, which contradicts the constraint. Thus, it follows that λ ̸= 0, and hence

1+
1

y
=

y+ 1

y
=

1

λ
=

x− 1

x
= 1−

1

x
.

Rearranging the above, we conclude that
y = −x.

Plugging the above into the constraint yields 2(x− 1)2 = 1, and it follows that

x = 1± 1√
2

.

Since y = −x, then the maximum could only be achieved at one of the following:(
1+

1√
2
,−1−

1√
2

)
,

(
1−

1√
2
,−1+

1√
2

)
. [7 points]

It remains only to check by applying g to the above points:

g

(
1+

1√
2
,−1−

1√
2

)
= 3+ 2

√
2,

g

(
1−

1√
2
,−1+

1√
2

)
= 3− 2

√
2.

Thus, the maximum value is given by
gmax = 3+ 2

√
2, [2 points]

and gmax is achieved at the point

(xmax, ymax) =

(
1+

1√
2
,−1−

1√
2

)
. [2 points]
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Question 6. [13 marks]

(a) Let C be the circle centred at the origin and having radius 2,

C = {(x, y) ∈ R2 | x2 + y2 = 4},

with the anticlockwise orientation. Use Green’s theorem to compute∫
C

F · ds,

where F is the vector field on R2 given by

F(x, y) = (xex
2 ln(1+ x2) − 3y, 3x+ y18 sinhy cosy2)(x,y).

(You may use that the area of the inside of a circle with radius R is πR2.) [8]

(b) Bob wants to integrate a vector field F (on R3) over a cylinder of height 1,

S = {(x, y, z) ∈ R2 | x2 + y2 = 1, 0 < z < 1}.

Applying the divergence theorem, Bob obtains∫
S

F · dA =

∫∫
V

(∇ · F)dxdydz,

where V is the interior of the cylinder,

V = {(x, y, z) ∈ R2 | x2 + y2 < 1, 0 < z < 1}.

As a tutor for MTH5113, you decide that Bob must lose some marks for this.
Where did Bob make a mistake? [5]

(a) [Seen similar] First, observe that C is the boundary of the region

D = {(x, y) ∈ R2 | x2 + y2 < 4},

i.e. the disk of radius 2 about the origin [2 points]. Also, note that F satisfies

∂x(3x+ y18 sinhy cosy2) − ∂y(xe
x2 ln(1+ x2) − 3y) = 6. [2 points]

Thus, applying Green’s theorem, we conclude that∫
C

F · ds =
∫∫

D

[
∂x(3x+ y18 sinhy cosy2) − ∂y(xe

x2 ln(1+ x2) − 3y)
]
dxdy

=

∫∫
D

6 dxdy. [3 points]
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Finally, since the area of D is π · 22 = 4π, then we obtain∫
C

F · ds = 24π. [1 point]

(b) [Unseen] Bob applied the divergence theorem incorrectly—the boundary of V is not
only the cylinder S, but also the two disks comprising the “top” and the “bottom” of V .
Thus, the integrals over these disks must also be included [5 points].

End of Paper.
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