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Chapter 1

Introductory material

Last revised: 29 Sep 2010
This chapter gives a quick review of the key parts of the pyeiste courses (Calculus | and II, and

Geometry I) which we will actually use in Calculus Ill, addisome extra material. Those parts which are
revision will be without examples.

1.1 Trigonometric functions

1.1.1 Values

(See Thomas 1.6)
We can quickly obtain the value of a trigonometric functiondny argumentin terms of values foe [0, %n]
by remembering a few things. First we have the table

| 0° | 30° = Z radians| 45° = Zrad. | 60° = Zrad. | 90° = 7 rad.
cos| 1| ¥ | 5 | & o
wlo] & | & | % |1
To get the sign for other values we can use the mnemonic table
Radians Degrees | sin cos tan| Positive functions

(0, 3m) (0°,90°) +  +  + [Al

Amm (90°,180) | + — — | Sin
(m,3m) (180,270) | — - + | Tan
(3m2m (270,360) | — + — | Cos

sometimes called the ‘Add Sugar To Coffee’ rule — or use Th&dmariant “All Students Take Calculus”.
(Note: to be entirely accurate we should have special rowsigtable for the valueénetc because at those
points one or more of the functions will be zero or unbounyged.
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Then we remember what happens when we repldne—x, X+ 11/2 orx+ 1T

cog—X) =C0sX, Sin(—Xx) = —sinx,
m . : m
cogX+ E) = —sinx, sin(x+ E) = COSX, (1.1)
COSX+ T) = —COX, Sin(x+ 1) = —sinx.

These are very easy to derive fra = cosx+ i sinx, remembering tha#’/2 =i, €™ = —1. Using them
in combination we can get
CcogTT—X) = —COX, Sin(7T— X) = Sinx.

and so on.

More generally

cogx+ (m+ %)n) = (—1)™Vsinx, sin(x+ (m+ %)n) = (—=1)™cosx, (1.2)
cogx+nm) = (—1)"cosx, sin(x+nm) = (—1)"sinx. (1.3)

wherem andn are integers. These identities enable us to relate the vedueant to a value in the first
quadrant (i.e. the rand®8, %n]). Remember the special casesxct 0,

cognm) = (—1)", sin((n+ %)n) =(-1" (1.4)

cog(n+1/2)m) =0, sin(nm) = 0. (1.5)

which will turn up regularly later on.

1.1.2 Identities for the trigonometric functions

The most important formulae to remember are

SifA+cogA=1 (1.6)
coA+ B) = cosAcosB — sinAsinB (1.7)
sin(A+ B) = sinAcosB + cosAsinB. (1.8)

If you have trouble remembering which of the last two is whihd which has the minus in it, try substituting
some special values suchAs- 0 orB = %nand checking the result. For example, takig: 0 in the last
equation gives siB = 0+ sinB, consistent, whereas if you had tried @+ B) = sinAcosB — cosAsinB you
would get sirB = 0 — sinB, clearly wrong. From these and the earlier results Eq. 1. fj&te

cogA— B) = cosAcosB + sinAsinB
sin(A— B) = sinAcosB — cosAsinB.

and by adding or subtracting various pairs of the above égustwe get

COSACOSB = 3(Cog§A+ B) + cogA— B)) (1.9)
SiNAsInB = 1 (cogA— B) — cogA+B)) (1.10)
SiNAcosB = 1(sin(A+ B) +sinfA—B)), (1.11)

which we will find very useful in doing integrations likecognx) cogmx) dx which turn up later on.



The double angle cases

Sin 2X = 2 sinx cosx

CosX = co$X—SiPx=2co$x—1=1—2sirfx
cogx= 1(1+cosX)

sifx=1(1-cos¥)

come up often; we get the “half angle” cases by just substiubh y = 2x, x=y/2 in the above.

Using the basic identities we can easily derive plenty msueh as

se¢A=1+tarfA
cosC + cosD = 2 cos}(C+ D) cos3 (C—D).

We should also note (see Thomas 3.4) that for any conktant

d(sin(kx)) d(cogkx)) .
i k cogkx), - —k sin(kx) .
Both sinkx) and coskx) therefore obely
d?y 2
v —k%y.
and it can be proved that these give all solutions, i.e.
d?y 2 .
a2 = —k?y & y=acogkx)+ bsin(kx) (1.12)

for some constan@andb. We could also write the right side as a combinatio@bande .

1.2 Ln, orloge, exp, and hyperbolic functions

(See Thomas section 7.2)
The natural logarithm Ir can be defined as

X dt
Inx:/ —.
1t

This implies In 1= 0. Note that this is not a good definitiornxk 0, but it is easy to show that for negatixe
[*du/u= In|x| + constant. The number(Euler's number) is then defined byédn= 1. (After m, this is the
second most important constant in maths).

From the definition it is obvious that
dinx }

dx X
One also finds:
In(ab) =Ina+Inb,

Repeated application of this showsaR) = nina for integern, and it turns out this is true for any powpr
ie.
InxP = plInx,

1Those who have done applied maths. at A-level or later maygreize this as an equation for simple harmonic mation.



In particular, either puttingg = —1 in the above, ob = 1/ain the previous equation, gives us
In(a!) =In(1/a) = —In(a)

and hence
In(a/b)=Ina—Inb.

Notethat In(a+b) # Ina+Inb (unlessa+ b = ab).

We can define exp (see Thomas 7.3) to be the inverse functibm s that exfinx) = In(expx) = x.
Then expl= e and exp = €. Note that expa+b) = e2e® NOT €2+ €. For any numbea, a=€"2 and
hencea* = (€"2)* = e/"a, |n particular, this enables us to relate the usual logamitifbase 10) to natural
logarithms since ik = log; gy, y = 10¢ = €10, so Iny = xIn 10 andx = Iny/In 10. For a generai we can
define logy = x to be such thag = &*, so Iny = log,y.

One can show that
dexpx

dx

to prove that, takg = expx, take In of both sides so in= x, then differentiate givind1/y)dy/dx =1 (by
the chain rule), and rearrange.

= expx;

We can now use* to define the hyperbolic functions (see Thomas 7.8)
costx= (' +e7¥), sinhx=3(e*—e ).

These functions have identities and derivative propettiasrun closely parallel to those of sin and cos. If
you know the trigonometric identities, the identities fgplerbolic functions can be recovered by substituting
cosh for cos andsinh for sin, wheré? = —1.

From differentiatingg® we find

d sinhkx B dcoshkx

i kcoshkx, - ksinhkx .
Thence
dy i
2= key < y = acoshkx) + bsinh(kx) (1.13)

for some constant@andb (we can also writgy as a combination o ande™).
Comparing Eq. 1.13 with 1.12, we now see how to sal¢g/dx?> = Cy for any constanC : if C is

positive, we defind = +/C and get 1.13, while if C is negative we defike- /—C and get 1.12; finally if
C = 0 we easily integrate twice to ggt= ax+b.

1.3 Double and triple integrals

(See Thomas 15.1 and 15.4)
First let us revise the idea of 2-D integration.

Example 1.1. Integrate the functiori (x,y) = x?y? over the triangular are@: 0 < x< 1,0<y < x.

We can write this integral as
/ f(xy)dA,
#
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Figure 1.1: Integrating over the triangular regigh: 0 <x <1, 0<y < x.

where dA is an area element. But the area of a little rectangle of ledgtin the x-direction and lengttdy in
they-direction isOA = dxdy; hence we can rewriteAlas dA = dxdy. Thus the integral we want (cf. Fig. 1.1)

is
1 X
/ / f(x,y) dxdy / < / x2y2dy> dx
x=0 y=0
1 X
/ <x2/ y2dy) dx
x=0 y=0
e (1e)
[ (%)
1
] -
18 |, 18
Here there are two key points to note: the limits on the (ihgantegral depend om, and in the second

step we have moved th& outside they integral because it does not dependyoso, thex? behaves like a
“constant” inside theg-integral , but not for thex integral.

An area integral such as this is often called a double intdgecause it can be rewritten as two 1-D
integrations). Some authors use two integration signsenairdd you that it is an area integral: thus they
would write [ [ f(x,y)dA. In this coursewhenever it is obvious that an integral is over area, we shall
generally just write [ f(x,y)dA.

Similarly some books writd [ [ f(x,y,z)dV for a volume integralwhere no confusion will arise, we
shall just write [ f(x,y,z)dV.

We shall need to put in all the integral signs when obtaininglae by doing the two or three integrations
with respect to coordinates.

Exercise 1.1. Calculatef,, f(x,y) dA for
f(x,y)=1—-6x% and Z:0<x<2,-1<y<Ll
[Answer: 4] a
Note that in that exercise, the region of integration is aaegle, so the limits of both the andy-
integrations were constants so one could doxher they-integration first — the answer will be the same.
This holds for any rectangular region in 2-D , or for a cuboigen we come to 3-D integration.
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In example 1.1, we had a triangle; now the upper limit of thesitle” integral depends on the “outer”
variable. upper limit of the-integral wasx, so they-integration had to be performed first with the limits as
given. Otherwise the answer would have read

//f(x,y)dxdy = [/XO</Xle2fdx> dy:x—gg.

This depends or, which is ridiculous as the answer is for a whole area, notesgatue ofx. If we want to
change the order of integration we need to takeing from 0 to 1, them runs fromy to 1 (check the sketch);
now we have to put thex integral on the inside, and we get

//f(x,y)dxdy = /ylo (/lexzyzdx> dy.

Check that this does give the same answer.

It's important that you understand how to get these limitesewdoing a numerical evaluation of a multiple
integral, there are several rules to remember :

i) Work out the limits on each variable from a sketch.

i) The limits on each integral may depend on the variaklg®tc appearing adx, dy outsidethat integral,
but should not depend on those inside it. So the limits on tliermost integral sign should not depend
on any ofx,y,z if dxis the outermost integral

iii) The limits on each integral apply to the “matching” varigldgain working from inside to outside. So
the last integral sign matches the first onalrfdy, dz etc.

iv) Evaluate the resulting multiple integral from the “insidet’y so you evaluate the innermost integration
first. Putting in brackets can be helpful here, as in the examipove.

Itis a straightforward step from double integrals to voluntegrals (triple integrals) of the forrfy, f(x,y,z) dV.
In Cartesian coordinates we havweé & dxdydz (the volume of a 3-D rectangular box) and so

/Vf(x,y,z)d\/:///vf(x,y,z) dxdydz.

Sometimes the geometry of the volume will make other choafesoordinate system preferable. In
Thomas 15.3 and 15.6, which were studied in Calculus II, divoensional plane integrals in polar coordi-
nates, and triple integrals in spherical and cylindricdbp® are discussed: you will find it very useful to
revise those sections. For a general change of coordinstersyfrom Cartesian, y, z) to (u, v, w),

///Vfdxdydz:///vfmudvdw

wherelJ is the Jacobian determinant o, y, z) with respect to(u, v, w). This determinand is the volume
ratio of the two coordinate systems: if we take an infinitediouboid in(u, v,w) space of volumeludvdw,
this will map to a parallelepiped iy, z space, and is the ratio of those volumes (if you need to revise this
in more detail, see Thomas 15.7).

Exercise 1.2. Evaluate[ [ [ € dxdydz over the volumé&/ of the tetrahedron bounded by the four planes
x=0,y=0,z=0andx+y+z=a(a> 0). [Answer:e® — %az —a—1] O



1.4 Curves and surfaces

We shall use various geometrical shapes in examples, so agthe equations for them. The main ones
are so-called ‘conic sections’ in two dimensions, and esldhree-dimensional surfaces. Other courses also
discuss more complicated shapes (see e.g. Thomas 10.6 and 10

First we discuss curves in two dimensions. There are three weays to specify a curve:

One way is to give an equation= f(x); a second way is to give an equatigfx,y) = 0: the curve is
then the set of point&x, y) obeying the equation. Given the first form, we can get the rsétdxy defining
g(x,y) =y— f(x), but not necessarily the converse

A third way is theparametric form in terms of two functions of some variabie x = a(t), y = b(t) (see
Thomas 3.5). Sometimes we can tdke x itself. The parametrized form carries extra informatioboat
which direction and how fast we go along the curve agange$. We will see a lot more examples of the
parametrised form in Chapter 2

Using the second way, some standard curves are:

XC+y =a circle, centrg0, 0), radiusa (1.14)
2 2
% + é =1 ellipse, centré0, 0), semi-major axea andb (1.15)
y=ax’+b parabola, symmetric aboxt= 0 (1.16)
oy’ — ki =a? (ck>0) hyperbola, symmetric about= 0 andy = 0 (1.17)

(See Thomas 1.2, 1.5.) The special case of a hyperbolaawth is just a pair of straight lines. These curves
involving only constants and powers upxbandy? are known as theonic sections

To recognize these, first look for the coefficients of fdandy?:
if one is 0, but the corresponding variable appears linedldya parabola;
if they have the same sign it's an ellipse (or as a special aagele), and
if they have opposite sign it's a hyperbola
(assuming the remaining constants allow there to be sonmgg? + y? = —5 has no real points).

What if the equation is quadratic but not one of these stahfitleams? Given
X%+ 6X+y?+8x=0
we can carry out a process called ‘completing the squaretii®@ it as
(Xx+3)%+(y+4)?%=25

which we now recognize as a circle radius 5, ceffitr8, —4): this circle passes through the origin. Similar
methods can be used to recognize the other standard cuthey iéire given relative to origins different from
the ones used in the most standard forms below (cf. Thomas 1.5

We can also recognize the case where the axes have beewiraedf in a similar way. For example,
Xy =b? & (y+x)%2 — (y—x)? = 4b?, so it's a hyperbola where the symmetry axes are atd%shose used in
(1.17) withc = k = 1 and with 4 = a2. In general we have to complete the square on the terms digidra
x andy: for example the rearrangement

X2 4 4xy + 3y2 = (X+ 2y)% — y?

shows the curve? + 4xy + 3y? = 6 is not an ellipse, as you might think from the fact the coffits ofx?
andy? are both positive, but a hyperbola.

2The latter approach is used heavily in Geometry II.



Parametrized curves are also useful, especially when ladileg line integrals along curves later on.
Here are some standard parametrizations for the circipseland hyperbola:

X2 y2 = a? (x,y) = (acos8, asinb) (1.18)
2R

R (x,y) = (acos, bsing) (1.19)
V2 X% =a? (x,y) = (asinh@, acoshd). (1.20)

These work because of the identity (1.6) and its hyperbalimterpart costhx — sinf?x = 1. (See Thomas
10.4 for futher or alternative parametrizations.) We sha# these, especially the first two, later.

1.5 Surfacesin 3-D

[Here we meet material you may not have seen before.]

For surfaces in 3 dimensions, there are similarly three maips to give the equations. One is to give
one coordinate in terms of the other two, ezg= h(x,y). Another is to use a single equativiix, y, z) = 0.
The third is by a parametrization in terms of two variables €(u, v), y(u, v), z(u, v)) (see Thomas 16.6,
and more details in Chapter 2).

We shall again focus on surfaces described by quadratigsyirandz at worst. To work out what the
surface is like, one good way is to consider letting one cimatig be constant, for exampte= d, which
means we are considering a “slice” through the surfaee0 at the plane = d. The intersection of a curved
surface and a plane is generally a 1-D curve, which we shoailahtte to identify from the previous section.
Then we just stack those curves for varyohg

One simple case is
Xty =a?

The equation is the same as for a circle, but as we are now im8rdiions, it implieg can take any value.
In each planeg = d we have a circle. Hence, this is an infinite circular cylindkmg thez-axis. Very often
some bounding values afare given, e.g. & z< 2. Then we have a finite cylinder, the shape of a drinks can.

Example 1.2. What is the surfacé + é =1?

Itis an infinite elliptical cylinder along the axis.

We can also have parabolic and hyperbolic “cylinders”, g¢ih16) and (1.17).

Another simple three-dimensional surface is that sphereof radiusa centred at the origin:

Xy +Z2=2a. (1.21)

Example 1.3. What is the surface? + y2 + 22 = a2, x > 0?

The hemisphere to the right of the plaxe: 0.

We can put together cases where we get one of the standasidfparve listed earlier in planes=d
and different ones in planes= k ory = msay.



For example, we can generalize the ellipse (1.15) to

XXy 7
;‘i‘@‘i—?:l (1.22)
(see Thomas, 12.6). In this case each of the three types-plang gives an ellipse as the curve. The surface
is anellipsoid. This shape, and the ones that follow, are shown in diagré8112.52 in Thomas. (also,
the Wikipedia article on “Quadrics” has some pretty graphic

If instead we had taken

Z X2 2

_xX .y
. + Z (1.23)
we then have an ellipse in each plane d but a parabola in each plane= k ory = m. This is anelliptic
paraboloid. Changing the plus to a minus in this equation gives a hypierparaboloid.

Similarly we can obtain afelliptic) hyperboloid as
2

XXy 7

?‘F?—?:—Fl. (1.24)

Here we have ellipses in planes- d, and hyperbolae in the planes= 0 andy = 0. Moving thez? term over
to the RHS, we see the RHS is positive for ango there is an ellipse for any fixed valuezadnd the surface
has just one piece (we say ‘one sheet’).

However, if instead we had-al on the right, i.e.

Xy 7
2T @b (1.29)
we can rearrange into
XXy 7
Stp-s-l (1.26)

It's now clear that ifZ2/c®> > 1, i.e. z< —c or z > ¢), we again get an ellipse in the plane; but if
—c < z< cthe RHS is negative and there are no solutionxfgr This is a hyperboloid of two sheets.

The elliptic paraboloid and hyperboloid have circular specases whera = b. Note also that we can
swapx, y andz around in these forms so we have different choices of axethéosame shapes.

There is also the special case of the hyperboloid equatia@revine constant on the RHS is zero, i.e.

XXy 7
2T 2
ac b? c

This is a cone through the origin. Taking a plane through tigirosuch asx = 0, we get two straight lines,
while taking planes perpendicular to the axes but not thindbg origin gives ellipses or parabolae. In fact all
the quadratic curves (ellipses, circles, parabolae anditogiae) can be obtained by intersecting the circular
conez’ = x? +y? with planes (not necessarily perpendicular to the axes3:ishwhy they are called conic
sections (see Thomas chapter 10).

0 (1.27)

If we are given a quadratic surface in a different form, we €@est rearrange it into one of the forms
above: rearrange so that all thgy, zterms are on the left, and the constant on the right; if thestaont is not
zero, divide by it to get a-1 on the right; then look at the?, y> andz’ parts: if two or three of these have
negative coefficients, just multiply by1 to make at least two of the coefficientsxdf y?, 2 positive, Then,

If all 3 are positive, it's an ellipsoid (or a sphere).
If two are positive and one negative it's a hyperboloid, arednged to check the constant term
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to see if it's one sheet or two
If one of the threex?,y? or Z% terms is zero, but there is a linear term in the corresponding
variable, it's a paraboloid: the relative sign of the otheo show if it is elliptic or hyperbolic.
If one variable is missing completely, it's a “cylinder” gim by the matching 2-D curve.

As in the case of curves, we can work out what the shape is édjations are not in standard form but
have shifted origins or rotated axes, by completing the sgueor this course, we'll keep it simple though,
so we will only be looking at surfaces which are aligned with toordinate axes.

Now for some parametrized versions (see Thomas 16.6)

Implicit form Parametric form
Cylinder x> +y?=a? (x,¥,Z) = (acosh, asinf,z)  Parameter§,z  (1.28)

Sphere X*+y?’+Z=a’ (asinfcosp, asin@sing, acosh)  Parameters, @ (1.29)
2 2

Ellipsoid % + é + 2= +1 (asinBcosy, bsinBsing, ccosd) Paramete®, ¢ (1.30)
. Xy 7 _ L
Hyperboloid P + 22 1 (acosu, bsinucoshy, csinusinhv) Parameters,v (1.31)

1.6 \ectors

(Note: this is in chapter 12 in Thomas but in Geometry | youdud@st)

Vectors can be introduced as displacements in space, gailgtion vectors To describe a position vector,

we need to specify its direction and its length or magnitudesy how far we go in the given direction).

This is a geometric definition. A vector is different fronsealar, a quantity which has only a magnitude but
no direction.

One can draw a vector as an arrow of the appropriate lengtldiaection. Vectors are usually notated in
print by boldface type, e.@, and in handwriting by under- or over-lining suchas, or a.

Warning: When writing, it is tempting to miss off the under/overlinessave time. This is a bad idea,
because if you confuse what’s a scalar and what’s a vectasun working, you immediately get nonsense.

To define a vector algebraically, i.e. in a formula, we can thgeCartesian coordinates of the point to
which it displaces the origin, e.g.
r=(xYy,2. (1.32)
Note: As you saw in Geometry I, we can write vectors either as rowobnrmn vectors. The column vector
form is useful if you are multiplying by matrices (like roi@mh matrices), but in this course we shall mainly
use the row vector form which is more compact.)

Herex, y andz are called theomponents of r. We may refer tqx, y, z) as the point. From now on we
shall use the notationonly for this vector.

The length of a vectov is denoted byv| or sometimes jus; this is a scalar. The vectorhas length
X2 4 y2 472, by Pythagoras’ theorem in 3 dimensions.

To add vectors andb we simply take the displacement obtained by displacing liiyst and then byb
(the result can be defined as the diagonal of the parallelogrith sidesa andb). In components this says
thatv = (v, v2, v3) andw = (wj, W, w3) have the sum

V4 W= (V1 + W, Vo + Wy, V3+ W3).
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Subtraction can then be defined similarly. The zero ve@tisrthe one with zero magnitude (and no well-
defined direction!).

It is now easy to show this obeys the usual rules of additiod gubtraction§.
The displacement from a point to a pointrp isro —ry.

We can multiply a vector by a scalar (a numbgr)simply by multiplying its magnitude, preserving the
direction. In components, if = (v1,V,,Vv3) then we have

AV = (Avy, AV, Avs).

This operation also obeys very simple and obvious rtil@his multiplication gives us a way to define the
unit vector (the vector of length 1) in the same directiow adenoted by, by V = v/|v| (strictly, we should
write the number first so we would have to write/|v|)v, but in practice it's obvious what we mean).

These rules give us another common way of writing a vectornéle that we can arrive at the same total
displacement by first moving along tlxeaxis, then parallel to the—axis then parallel to the—axis; and we
can express this by defining the unit vectplisandk along the directions of the three axes by

r=x+yj+z.

This way of writing (1.32) has the advantage of making it dedow the components change if we change
our choice of axes: if we rotate our axes to a different system, Z, we will get 3 new unit vectors e.g.,
i’ andk’, and converting vectors between systems looks like a miattyittiplication - more on this later.

Note that all of these statements about position vectorsdim&nsions can very simply be applied in 2
dimensions also, with obvious minor changes.

Although we have motivated vectors by introducing them apldcements, they can represent, or be
interpreted as, many other things: for example, a force)acitg, inputs and outputs in an economic model,
and so on.

A parametric equation of the type
r=p+taq, —o<t< oo (1.33)

defines a line through poiptparallel to directiory. For example =tk, —o <t < « is thez axis.

Using this, we can get the straight line going through tweegipoints ; andr,: the vector fronrq tor,
isro—r1, so the (infinite) line through them is

r=ri+t(ro—ri), infty<t<o (1.34)

If instead we take a range0<t < 1 in the above, this gives us the finite line segment with eoidtp at the
two given points. This will be very useful later omemoriseit.

3This means that for any vectoasb andc,
a+b=b+a (a+b)+c=a+(b+c), JOsuchthad+0=a,

and givena, 3(—a) such thal+ (—a) = 0. These rules are purely abstract and make no referencepiacisnents or three dimensions,
and are part of the general definition of a vector space whsdfivien in Linear Algebra I. Those who have encountered gaif
recognise that they ensure that the space of vectors is ativadgtoup under vector addition.

“More precisely, for any vectomandb, and numbera andpu, we have

A(a+b)=Aa+Ab, (A+p)a=Ara+pa, (Ap)a=A(ua)

and Ja = a. For a general vector space, as defined in Linear Algebra Istalars are elements of a general field but here we shall only
use the real numbef®. However, these rules do apply wharandu are elements of a general field, for instance the complex ewnb
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Example 1.4. Medians of a triangle
Vectors can often be used to derive geometrical resultsa@ngisely, as this example shows.

Let a,b,c be the corners of a triangle. The midpoint of the side coringdt andc will be %(b +c). A
line through this midpoint and is

r=a+t(}b+ic-a), -—w<t<o
which is called the median through Puttingt = % (note: here this choice is a rabbit out of the hat, but we can
find it by writing down a second median and solving for the liséetion point) we get the poir%t(a+ b+c).
Since this point is symmetric ia, b, c, the medians througih andc will also pass through it. Hence the three
medians of a triangle intersect at a single point.

If we write out the components of (1.33), with notatioe- (X, Y, 2), p = (p1, P2, P3), 9= (01, O, 03)
we find
X=p1+tqr y=p2+tde, z=p3+1i0s,

from which we can eliminateto get
X=P1_Y—P2_72—-Ps

)

a1 7] as

giving the two independent linear equations (e.g. yaand z in terms ofx) needed for a line in three-
dimensional space.

We can now write functions of 3-dimensional positibfx, y,z) more compactly as functiorf§r). Equa-
tions of the formf(r) = constant define surfaces, the constant surfacds @ simple example i? = 1,
which is a sphere of unit radius centred at the origin. (Renal notation allows = |r|.)
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Example 1.5. A sphere
The geometrical interpretation of
r—k|=1

as a sphere of unit radius centred @0, 1) is obvious. Equivalent expressions afer y?> + (z— 1) = 1 and
X2 +y?+722-22=0.

Warning: One of the commonest errors made by students is to confusersemd scalars, in particular
to start adding together the components of a vector. Thewégt1, 2) is not the same as the scalar 6. This
may seem obvious now, but the mistake is more easily made wéiag basis vectors like j andk; then it
somehow seems to be easier to make the mistakg 3 2k = 6.

1.7 Scalar and vector products

We have defined vector addition and subtraction, but notipligiation of vectors. This is more complicated
because to obtain another vector we need to define both a tndgrind a direction (and in general, vector
division cannot be defined at all; we can divide a vector byadas@ just by multiplying by YA, but we
cannot divide anything by a vector).

We first define the dot product, or scalar prodyethose result is not a vector but a scalar. For vectors
andw, this is defined by
V.W = |v||w]|cosb, (1.35)

where@ is the angle betweenandw. An alternative definition in terms of the componefis, v», v3) and

(W1, W2, W3) of v andw is
3
V.W = ViWp + VoW2 + VaWg = ZVi Wi.
i=

One can prove that the two definitions are the same by appBjytigagoras’ theorem to a triangle con-
structed as follows. Take sidgsw andv +w. Draw the perpendicular from+ w to the line in directiorv.
It has heightw|sin@ and meets the directionat a distancév| + |w|cosf. Now write out Pythagoras with
the lengths in terms d¥|, |w| and6 and again in terms of components and compare the resultsdéthds
are left as an exercise (if you have trouble, look in the anfintes for MAS114 Geometry | orin A.E. Hirst,
Vectors in 2 or 3 dimensions, Arnold 1995, chapter 3).

We note in particular that two non-zero vectorandw are perpendiculais a right angle) if and only
if vw=0.

Example 1.6.(This example was used in Geometry 1.)
Find cosf where@ is the angle between= (1, 3, —1) andw = (2, 2, 1).

vw = 12+432+(-1).1=7=|v||w|cosh,
VP = 1?7434 (-1)%=11
w2 = 22422412=9 so
cosf = ;:L
V19 3V1i

5In a more abstract setting (such as in Linear Algebra I thiy miso be called the inner product.
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From either form of the definition we can easily derive vasalgebraic rule§.

A geometrical application of the dot product is in giving thguation of a plane. The plane through a
fixed pointp perpendicular to a fixed vectwiis given by the set of all pointswhich haver — p perpendicular
tov, as is easily seen from a sketch. Since two perpendiculéorselave a dot product of zero, this gives

(r—p)v=0 (1.36)
This easily rearranges tov = p.v and the right-hand side is just a constant for gipen

In components, i = (a, b, ¢) andp.v = d the equation for a plane reads+ by + cz=d. In practice
people often choose a unit vectowhen specifying a plane in this form, so thpah becomes the perpendic-
ular distance of the plane from the origin. Then, the distawfany other point; from that plane is given by
(ri—p).n=ri.n—p.n=ry.n—d (the sign here tells one which side of the planés on).

The vector product: To define a product of two vectors which is a third vector, wedhé define a
direction from two vectors andv. The only way to do this which treats the two vectors equallpitake the
perpendicular to the plane in whichandyv lie. However, this does not fully define a direction, because
need to know which way to go along the perpendicular. Forttie@tonvention is to use the so-called right-
hand rule: hold the fingers of your right hand so they curl @fmom u to v and then take the direction your
thumb points (see Thomas figures 12.27 and 12.28). If you doy@lu may find it helpful to remember that
this is the direction a normal screw travels if you turn yoaresvdriver clockwise. Note that this definition
only works inthree dimensions there is no well-defined vector productirdimensions fon > 3.

The magnitude off x w is defined to bev||w|sin@ (0 as before). Geometrically this is the area of a
parallelogram with sideg andw. Note that for perpendicular vectors this rule implies thet magnitude is
[v||w|. These rules have the consequences that for any vectemndw and any scalak,

VXW = —WXV,

AV)xw = A(vxw)=vx(Aw),
ux (V4+w) = (UxV)+(uxw),
(U+V)XW = UXWHVXW,

andv x w = 0 for non-zerov,w if and only if v andw are parallel or anti-parallel (in particularx v = 0 for
anyv).

Note: it is particularly important to note the sign-change prapéhatv x w = —w x v. This looks
“silly”, but is a consequence of the “handedness” of thrememhsional space, and which way round we
choose to label our three coordinate axes.

From the notation used, the vector product is often callec:toss product.

6The main ones are thatw = w.v and that for any vectors, v andw and any scalah,

v.(Aw) = A(v.w) = (Av).w,
u(v+w) = (uv)+(uw),
(u+v)w = (uw)+(v.w),
v = [v?>0,
vv = 0&v=0.

"You will also find that in some texts it is denoted\ w, but | strongly advise against using this notation as it $e@dconfusion in
more general settings wheve\ w is not a vector. The reason for this misuse is thatw is what's called a two-form, and there is an
operation called the Hodge dual, denoted«bguch that in three dimensioagv Aw) = v x w.

14



To get the expressions for the cross product in terms of corapis, we can start by noting that the unit
vectord, j andk are perpendicular to one another (so the vector productyofvem distinct ones among them
has magnitude 1). This means thatj must have length 1 and be perpendicular to both of them, so it i
either+k or —k. Since the usua, y andz axes, in that order, are a right-handed set, it will turn tat t

ixj=-1k, jxk=4, kxi=-+],

and therefore
jxi=—-k, kxj=-i, ixk=-j.

(To remember these , think of the sequeijkigk ...; if the two vectors in the cross-product are in the same
order as in that sequence, the RHS hassgn, while if they are in reverse order there is-aign.)

Alsoi xi=] xj =k xk=0. Using these we easily obtain

(Vai +Voj +V3K) X (Wi +Woj +Wsk) = (VoWwg — VaWo)i + (Vawg — viwg)j + (ViWa — Vowyg )K. (1.37)

This can also be written as the formal determinant

i j k
Vi V2 V3
Wi W2 W3

One geometrical use of the cross product is in forming theiwa of a parallellepiped with sidesv
andw. Thinking of (say)u andv as the base, anfl as the angle betweanx v andw, so that the height is
|w|cosf, we see that

Volume of parallellepipee: (u x v).w (1.38)
(positive ifu,v andw are a right-handed set). This quantity is calleddtedar triple product and it is easy to
show that

U.(VXWw)=V.(Wxu)=w.(UuxV)

(but this is—v.(u x w) etc, remember). We can also show that swapping the dot aisd gives the same
result, i.e.(uxv).w=w.(uxv)=u.(vxw) from above, but note that the brackets also move, i.e. thescro
product must be done first (inside the brackets) otherwisedhult is nonsense. (Some textbooks may omit
the brackets, but this is potentially confusing). Cleamapping the two vectors inside the bracket changes
the sign, and we can show that this is also true for swappigdgvem of the three vectors.

Exercise 1.3. Prove from the definitions that, for al b andc,

ax (bxc)=(ach—(ab)c

This quantity is called theector triple product ; note that the position of the brackets matters here.

a
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1.8 Gradients and directional derivatives

(See Thomas 14.5 [and 16.2])

In Calculus Il you met functions of more than one variable.o3dé that were discussed there wetalar
functions, i.e. functions whose value at a particular point is a numBach a scalar quantity (magnitude but
no direction) that depends on position in space is callechdar field An example would be the temperature
in a room — it has magnitude but not direction (so it is a s¢atard it is (in general) a function of position.

Suppose tha¥ (x,y,z) orV(r) is a scalar field defined in some region. Then we can define adoe
gradient of V, at each point, which we denoi&/, as follows:

ov. ov. oV

DVZWl—Fd—y]-‘t—Ek.

So thex-, y- and z-components of the new vector a#®/ /0x, dV /dy anddV /dz. See Thomas 14.5 if
you need to revise this in more detail. Sometimes instead\bfive write gradV: the two notations are
interchangeable.

Example 1.7. If V(x,y,2) = x?sinz, calculatelV.

In this examplegdV /dx = 2xsinz, 4V /dy = 0 anddV /dz= x? cosz. Hence

[V = 2xsinzi + x?coszk.

Exercise 1.4. Evaluate the gradiefif of the following scalar fields.

@ f=x+y+z
(b) f =yx®+y3 —y+2¢%z

(c) f =ar, whereais a constant vector.
O
Now [V tells us howv changes if we move from one point to a nearby point. Suppossaveat a point

r = (x,Y,2), and then move a small distande= (dx,dy, dz) to the new point +dr = (x+ dx,y+ dy, z+ dz):
we will get a small change ¥, given by

v = V(x+dx,y+dy,z+dz) —V(xy,2)

d—vdx+0—vd +6—V
ox ay y 0z

dz

Here the second line uses the Taylor series in more than oiadie and discards terms in second and higher
derivatives sincelr is small. But(dx,dy,dz) = dr, and so the right-hand side is jusV.dr. Hence for a small
changdlr, the change iV is

dv =0Vv.dr (1.39)

Note: to use this, youmust evaluatelV at the point concerned.

In our original definition of grad, it was implicitly assumeldat we were working in terms of some
specified Cartesian coordinate systegy,z). Equation (1.39) is important, because we can use it as a more
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fundamental definition of grad, which will enable us to widtgwn OV in more general coordinate systems.
We shall return to this point later, in Chapter 5

Next, consider a surface
V(r) = constant

and suppose that the pointis on that surface. Ifdis a displacemerdn this surfaceyV (r1+dr) =V (ry).

Thus &/ = OV|r,.dr = 0. Since this applies for every small displacemenirdthe surface[IV|;, must be
perpendicular to the surface iat. This gives us a way of finding a normal to a surface when thiasetis
specified by a single equation: the unit normatill be 00V /|0V | evaluated at the point concerned.

Suppose we now want a hormal lineMo= constant, or a tangent plane (see Thomas 14.6). As we know
from (1.33) and (1.36), a line through poeatn directionq can be written in parametric form as

r=a+tq, —00 <t < oo
while the plane through perpendicular ta is
(r—a).q=0.

so all we have to do is insert valuesaéndq in these formulae. For the tangent plane and normal line to a
surface at a given poimt, this gives

(r—p).0vV[p=0 and r=p+tOV|p.

It is sometimes convenient to eliminate the parameter the normal line, which we can do by taking
the cross product withlV |-
(r—p)xOV|p=0.

Note that the formgr —p).n =0 and(r —p) x n = 0, using the unit normai, would give the same plane or
line (though inr = a+tn such a change alters the values &r given points) so we need not calcul&id/ |

to get the tangent plane or normal line.

Repeated Noteito use this, youmust evaluatelV at the point concerned.

Exercise 1.5. Find equations for the (i) tangent plane and (ii) normal Ei¢he point?y on each of the
surfaces:

(@)X +3yz+4xy=27, Py=(3,12).
(b) y?z+x%y =7, P=(21,3).

[Answers: (a) 18+ 18y+3z=54, r = (3+10t)i + (14 18&)j + (2+ 3t)k
(b) 4x+10y+z=21,r = (24+4t)i + (1+10)j + (3+1)k] O

Suppose now that we want to calculate the rate of changé¢rgfin a particular direction specified by the
unit vectort. Lets be the distance travelled in the directiontpthen d¢ =tds. So &/ = OV.tds. Hence we
can conclude that the rate of changé/ah the direction ot is

ﬂ =[OV.t =t.0V.
ds

t.0V is called thedirectional derivative. Now
OV.t =|0OV||t| cosf = |OV| cosb,

where@ is the angle between the vectal¥ andt. This is maximized when cds=1, i.e. whend =0. Thus
V changes most rapidly in the direction@¥/, and|0V| is this most rapid rate of change. Itis this property,

17



in the two-dimensional case, that gave rise to the namegmngdiecausé1V| is the gradient of the surface
given byz= f(x, y) in that case. Correspondingly the maximum decrease is Wisempposite td V.

Example 1.8. Find the directions in which the functioh(x,y,z) = (x/y) — yz increases and decreases
most rapidly at the point P4,1,1).

We can describe the directions in whi¢hincreases and decreases most rapidly by specifying the unit
vectors in those directions. Now

1 X
Of ==i— —+z)'—k: 1,-5-1) atP
y <W j—yk=( )

The rate of change df in the direction of unit vector is Of.t. This has its maximum whetnis in the same
direction ad1f; so the directiort in which f increases most rapidly is

of 1
ofl ~ vz

and the actual rate ig27. The rate oflecrease of f is greatest, at-+/27, whert is in theopposite direction,
i.e.

(1, -5, —1).

-1
75@,5_4)

Exercise 1.6. Find the directional derivative ob at the point(1, 2, 3) in the direction of the vector
(1,1, 1) where
X2y 7

o="4+L 2
37927

We can write[] on its own as )

.d .0
D_Iﬁx+10y+kﬁz
and work with it like a vector field, although it is in fact novactor field (since we cannot say what numerical
value its components have at a particular point); strigigakingO is avector differential operator. The
name of the symball is ‘nabla’ but often in speech we say ‘del’. It is easy to sew o take a two-
dimensional version afl. We will return tod in Chapter 3, where we shall see how th@perator can also
be used to differentiate vectors.
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Chapter 2

Curves, Lengths, Surfaces and Areas

Last revised 13 Oct 2010.

This chapter gives an overview of various methods for degugicurves in 2-dimensional and 3-dimensional
space, including parametrised curves, curves in polardinates, and some vector notation.

We then move on to formulae involving integration for the-Bogth of curves in each of these cases,
and for the area enclosed by curves in 2-dimensional polardicates.

Finally we extend this to defining parametrised surfaces @in3ensions (using 2 parameters), and the
areas of these surfaces.

2.1 Parametrised curves

2.1.1 Parametrised curves: definition

(See Thomas 3.5)

By now you are familiar with expressing a curve on a 2-dimenal plane in Cartesian coordinaiesy)
as
y="F(x); (2.1)

where f(x) is a given function, and may be any combination of polynosjisigonometric functions, ex-
ponential functions (called “elementary functions”), ooma complicated functions. This form for a curve
is called “explicit form” since a giveri specifies exactly how to calculaydfor any value ofx. Clearly for

a given functionf (x) we can draw a graph of this function by taking many values with suitably small
steps, evaluating(x) at each of these so we have a “dot'(&ty = f(x)) and then “joining the dots”. If is

a continuous function, then there are no “gaps” in this curve

This is straightforward, but we have the limitation that &achx the curve has a unique value p{the
converse is not true, i.e. choosing a particular vajgiéor y and solving the equatiof(x) = yp may give
none, one or many solutions known as “roots” #r So, a curve such as= f(x) can have “wiggles” in the
y-direction but not in the x-direction.
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In a few special cases we can have multiple valuey fiira giverx, e.g. for the familar case of the circle
x? +y? = a® we can writey = +v/a2 — x2, and the+t term gives 2, 1 or 0 solutions fgrdepending whether
|x| < a, x=a, or|x| > |a| respectively ; but this quickly becomes excessively coogpéid for more general
curves.

A second way to represent a curve in a plane is as the set obmltgpsatisfying an equation such as
f(x,y) =0 or f(x,y) = ¢, wherec is a constant; heré depends on botk andy and may not be separable;
this is called “implicit form”. This has some advantages wi# gee later, for example choosing different
values ofc can give us a “family” of different curves from one functidnhowever, a clear disadvantage is
that there is no easy way (in general) to calcujedita giverx = Xg; so sketching the curve (or programming a
computer to sketch it) can be cumbersome, unless we cannisedfe form of the solution from experience.

A third way to represent a curve in a 2-dimensional plane gparametrisation: now we defingwo
arbitrary functionsf (t),g(t) of a new real variable, and we define our curve call&las the set of all points
where

x=1f(t), y=9(t) hence (xy)=(f(t)9(t)) (2.2)
for any value ot in a givendomain (which may be finite or infinite). Here we call C tiparametric curve,
t is the parameter, andx = f(t),y = g(t) are theparametric equations for the curve. These equations
together with the defined domain bfconstitute a complete definition called tharametrisation of the
curve.

Given the above, it is clear that any valuetahaps to a single point in thgqy) plane; it is also fairly
obvious that if the function§, g are both continuous, then the resulting curve C is also nantis. (To prove
this, pick a valuég giving a point on the curvey, yp; then draw a tiny circle radiud aroundxg, yo. If f,g
are both continuous we can find some rangebt for which the curve is contained inside the above circle,
i.e. the curve has no “gaps”; if there were a finite gap in thweLthen eithef or g must not be continuous,
contradicting our assumption).

Using parametric form, we can express more complicatedesusuch as figure-eights, spirals and so
on which can self-intersect and/or cross a gixaralue many times (including infinitely many), and we can
“sketch the curve” by hand or by computer by just evaluafifig, g(t) at a sufficient number of points spaced
int and “joining the dots”.

Note that heré is not necessarily “time’t is just a “label” so that each point on the curve is “labelled”
with one value ot, or multiple values if the curve crosses itself at that point

Clearly if we are given a curve= g(x), we can put that into parametric form by simply definif{g) =t
in the above, so then=t andy = g(t) = g(x); but the converse generally is not true, so the parametni fo
is more general.

Now for a few simple examples: a very simple example is agititdine, which is given by

X=X+ at, y=VYo+bt ; (2.3)

and the domain-o <t < . Here it is easy to see that this parametrises a straightplssing through
the point(Xo, Yo) with direction vector(a, b) and slopeb/a. (If a # 0, we can rearrange the-equation to
t = (x—Xp)/a, and then substitute that into thie equation to gey = yp+ (b/a) (X — xo).)

Note that many possible choicesx@fyp, a, b lead to the same straight line, only the mapping ftoonto
points on the line will change. If we want a line throu@, yo) and(xy,y1) then we se= x; — xp, b=
y1 — Yo in the above, and if we want our “curve” to be a finite straighelsegment with endpointso, yo)
and(x1,y1), then we just specify that the domaintds 0 <t < 1 above.

Another simple case is given by
Xx=acod,y=asint ;
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it is clear that this obey®® +y? = &, so the curveC is a circle of radiusa centred at the origin. Since the
functions sin and cos are both periodic with period addingn x 2rirtot (for any integemn) gets back to the
samex,y. So if we lett run from —oo to +oo, the resulting curve loops around the circle an infinite nendf
times. So, in this case it is more convenient to specify agfiddmain fort, such as G t < 2, so over that
range the curve goes round the circle exactly once. (Hereamechoose any interval of lengthi2so e.g.
—rn <t < mmworks just as well).

We can generalise this to an ellipsesby acost,y = bsint; this is just a circle stretched by a factopfa
in they—direction, so the semi-axes a@ndb respectively. We can get an ellipse with mid-pointat o)
with by x = X + acod,y = yp + bsint.

The above illustrates a convenient property: because ifvesvlone parametric curve, we can produce a
shifted copy of it just by addingy andyp to the two functions; or we can stretch or squash it along Kes a
by multiplying our two functions by constants.

2.1.2 The cycloid

Another example of a curve which is easy to represent in patdnform is thecycloid, which can be
expressed as
x=a(t—sint), y=a(l-cog) (2.4)

If we didn’t have theat term in thex—equation above, it is easy to see this would be a circle ofissdientred

at (0,a); but the additionast term makes the circle’s centre “roll along” in tixairection ag increases. It
turns out that the above curve is the curve traced out by ample) a pebble stuck to a bicycle’s tyre as the
tyre rolls along the ground without slipping, so we get a caration of the “axle” going along at constant
rate and the pebble going in a circle round the moving axléhénexample above we have chosen things so
the “ground” is the x-axis, the axle goes along the kne a and the point is at the origin &&= 0.

This curve has applications in several real-world problegnsl you can see above that it is quite simple to
write in parametric form, but it is complicated in Cartes@ordinates (there is an expression in elementary
functions forx in terms ofy, but not the other way round).

There are generalised versions of this curve called theyelpicl and hypocycloid which are traced by a
point on one circle rolling around a second circle (instebalong a straight line), and furthermore there are
versions where the “point” is not on the circumference ofrbléng circle; these are calletlochoids. (You
won'’t be expected to memorise these, but you might be givertiuations as part of an exam question so it
is worth knowing the general concept).

2.1.3 Lissajous figures

A curve parametrised by= acoskit, y=bsinkst whereks, k, are constants (usually integers), is called a
Lissajous figure By considering what happenstagries, we can see that botlandy oscillate betweer-a
and=b, so the curve must always lie inside a rectangle with coragr&a, £b); but now the curve oscillates
at different rates in th&, y directions, and it can cross itself many times. If we chdqase 1,k, = 2 it will

turn out that we get a figure-of-eight. kf /k» is a simple fraction, it will turn out that the curve closesha
on itself after a finite number of “wiggles” ; but K, /k; is irrational it can be shown that the curve gets
arbitrarily close to every point in the above rectangle berter returns to exactly the same place; this sort of
thing may be seen in some computer screensavers, where yeahaon wandering around the rectangular
computer screen and it’s helpful for the pattern not to réfiealf.
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2.1.4 Parametric curves in 3 dimensions

We can easily extend the above parametric curves from 2 ton&mbions by defining a third functidnit)
for the z—coordinate, so that

x=f(t), y=g(t), z=h(t). (2.5)

Clearly for each value dfwe now get a pointin 3-dimensional space, and the set of pi(tt), g(t), h(t))
defines a 1-dimensional curve which is continuous, i, h are all continuous; the basic principles are the
same as in 2 dimensions.

A good example of this is thieelix, where
X=acog, y=asint, z="ht (2.6)

wherea, b are constants. Here aigaries, the distance of the curve from the z-axig/i€? + y2 = a (constant),

so the curve projected onto tRegy plane is a circle, but the z-value is increasing at a unifata,rso we get a
curve in 3 dimensions looking like the handrail of a spiraistase winding around theaxis. Each increase
of 2rrin t gives us one full “twist” around the—axis.

Note: In everyday English, this may be called a spiral: however &ihm terminology, the term spiral refers
to various types of 2-dimensional plane curve, while a 3atisional curve as described above is properly
called a helix).

Parametric curves may be expressed more compactly in vectation as = r(t), but of course we still
need to define the 3 functions for the 3 independent compsiéntso this doesn’t change any of the results,
it just makes the expressions more compact.

As an example, the parametric representation also makesté gasy to express curves which aren’t
symmetric about thg,y, z axes: for example, if we choose any two fixed orthogonal usitersu, v, we can
construct an ellipse with centroid et semi-major axisa and semi-minor axib respectively parallel to the
two vectorsu, v, by:

r(t) =c+ (acos)u+ (bsint)v ; (2.7)

we can of course plug in the components to wrig,z in terms oft, but then it will be a lot less clear
geometrically.

2.2 Arc Length of a curve

Here we show how to calculate the arc-length of a curve betwge given endpoints.

If we choose a point on the curvét), and a neighbouring poim{t + dt), then the vector difference of

these is q
r
r(t+ot) —r(t) maét ; (2.8)
this is the vector separation between the two nearby pomts@curve. Taking limits wherét tends to zero,
and assuming that the derivative exists, the curve tends tofmitesimal straight line segment, so we can

define the infinitesimakngth dsto be the modulus of the left-hand side above,

ds=|r(t+dt)—r(t)| = ‘% dt (2.9)
_|/df dg dh
(5994 210
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Therefore, we have

ds df\? /dg\? /[dh\?

@ V (&) + (&) (&) @10
ds dx\? /dy\? [dz\?

o Wa) (&) (%) 212

(This is effectively just Pythagoras’s theorem appliedridrdinitesimal segment of the curve, which has the
same length as a straight line joining its endpoints).

So, now we can define tharc length L of the parametric curve between two valugd, by integrating

the above, giving us
2 [/df\% [dg\? [dh\?
- M) () (0w 213

To be clearl. is the length of a virtual “piece of string” which exactly falvs the curve between endpoints
given byt; andt, at points(f(t1),g(t1),h(t1)) and (f(t2),9(t2),h(t2)), if the string was then “pulled out
straight”. The abové is not the straight-line distance between the endpoints whichldvbe just|r (t2) —
r(t1)|. Equation 2.13 remains valid even if some or all of the dérres cross zero, as long as none of them
become infinite or undefined. If our curve is in 2 dimensignswe just sez= h(t) = 0 anddz/dt = 0.

Note: In problems, you may be given a parametric curve, and the @ntipspecified in terms of
(x1,¥1,21) and(x2,¥2,2); in this case you will need to solve to find the valueg;0éndt, corresponding
to the endpoints, before doing the integral above. For eadpa@nt you can solve whichever of tixey,z
equations is simplest to gitty; then insert thosg, t; into the other two equations to check.

Example 2.1. The parametric curve C is given by=t,y =t2,z= §t3. Evaluate the arc-lengthof the
curve between points (0,0,0) a(@l 4, 18).

Answer: The end-points have valugs= 0 andt, = 2 (solve thex equation fort, and check the other

two equations give the desired point); the derivativesthy@t = 1, dy/dt = 2t, dz/dt = 2t%. Therefore the
required length is

2 2 2
L= \/1+(2t)2+(2tz)2dt:/ \/1+4t2+4t4dt:/ 14 22dt = [t + 233 = 22
t=0 0 0

Equation 2.13 can easily be simplified to give us the arctlenda curve in implicit form: i.e. if we
are given a 2-dimensional curve givenyas g(x), we can just definé(t) =t sot = x, y = g(t) = g(x) and
z=h(t) = 0; inserting this gives us the arc-length for the cuyve g(x) between the endpoints @t;,g(x1))

and(xz,9(x2)) as
X2 2
L:/ \J1+ <g—i) dx (2.14)

Similarly, if we have a curve in 3 dimensions where any twoha& toordinates are given as functions of
the other one, e.g: = g(x),z= h(x), then we get

%o 2 2
L (@) (E) e 219

for L the arc-length between end-pointxatandx,.
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(However, note that many common curves have arc-lengtigiake which are not soluble in elementary
functions; an ellipse is a well-known case where the cirarerice is not elementary, but is given by a
special function called adliptic integral. But one-dimensional integrals are generally very fasvadueate
accurately with a computer, since only one loop is needed).

2.2.1 Tangent vector to a curve

Given a parametric curve in either 2 or 3 dimensions, we caarby differentiate each of the component
functions with respect tb; assuming the functions are differentiable, this gives new vector

da . rt+aot)—r(t) <df dg dh>

||m - = = a,a,a

dt oo ot (2.16)

It is easy to see that this vectdr/dt is locally parallel to the curve at the selected point, agilasa all the
derivatives exist ; hence given a valuetef tp, we can evaluatey = r(tp) (which is the position vector of a
point on the curve), and defir@ = dr /dt|, which is a vector of direction tangent to the curve at the same
point, soQ is atangent vectorto the parametric curve at the point Thus, we can construct an equation
for thetangent line

r=ro+uQ , —oolU<o (2.17)

for any realu; hereu is another parameter (giving position along the tangesettour curve C atp). If we
write this out in components, the above is three linear equatgivingx,y,z as linear functions ofi, and if
desired we can rearrange those to give two linear equatmrthé tangent line: e.g. if we wagtandzin
terms ofx, we just rearrange threequation to givel in terms ofx, and substitute that into thez equations.

Note: in the above, we must evaluat@anddr /dt at the same pointi.e. the same value,aftherwise the
result will not make sense. Also, if you are given the cooatis ofr g rather thart, you will have to find the
value oft which gives you (t) = ro; you can pick whichever coordinate is the simplest to solve.

(Warning: equation 2.16 looks a bit like the equation fof which we met earlier. However, it's actually
very different becausé(r) was a scalar function of three variabley, z, whiler (t) along a parametric curve
is a vector-valued function of one varialile)

2.3 Curves in polar coordinates

As we saw in the previous section, it is sometimes conveiifierg are working with circles, ellipses or other
closed curves to work iplane polar coordinates here instead of the familiag y of Cartesian coordinates,
we can label any point P in a plane by its distandeom a fixed origin O, and an ang between the line
OP and the positive—axis. By convention@ is defined to increase “anticlockwise” (frosx towards+y)
so the positivg/—axis has® = +7, the negative—axis hasd = 11, and the negativg—axis hasd = 37"

The conversion frongr, 8) to x,y is given by simple trigonometry:
X =rcosf y=rsinf | (2.18)
which is clearly unique. Rearranging these to givin terms ofx,y, we have
r=+vx+y2 6 =arctanfy/x) + (nm) (2.19)

for some integen. Note however that the conversion frdmy) to (r, 8) is non-unique; one point in a plane
has a uniquéx, y) pair, and a particular pair, ) map to a unique,y; but one pointx,y) can be represented
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by two possible values of (positive and negative) and an infinite numberGo¥alues differing by integer
multiples ofri.e. different numbers of half-turns around the origin. Be point(r, ) is actually the same
pointas(—r, 8 + (2n+ 1)) and(+r, 8 + 2nm).

In most cases of interest we will be taking the positive vaitie and we’ll take® to lie in the interval
[0,271], in which case the mapping is unique, but be aware of potemtisiguities with this.

Clearly one of the simplest curves in plane polar coordimate
r=a (2.20)

wherea is a constant. Implicitly this also meafis= any value, so this is clearly a circle, centred on the
origin, radiusa. Likewise 8 = b whereb is a constant is a straight line through the origin at amgle

More generally we can define curves as
r=1(0) (2.21)

This is a convenient way to define certain types of curve; caenple is
r=a+hé (2.22)
which describes a spiral called anchimedes spiral.

It is possible to express a straight line in polars, for exknitps easy to show that the vertical lie= b
has the polar equatian= bsedd. More generally for a line which has closest distahd¢e the origin at angle
6o, we getr = bsec8 — 6).

2.3.1 Conics in polar coordinates

A particularly useful family of curves in polar coordinatieggiven by

1

re)=———— 2.23
(6) 1+ ecosb ( )
wheree is called the eccentricity anflis the semi-latus rectum. It can be shown that this equatiesag
conic sectionas we met before with the quadratic functionxiy. Heree = 0 gives a circle (with radius
0), 0< e< 1 gives an ellipsee = 1 gives a parabola anel> 1 gives a hyperbola, so by choice ethis

expression can give any of the above conics ; @isjust a scale factor giving the overall size.

Note: in the above representation Eq 2.23, the origin is fowes of the conic, the origin is not the
centroid except it = 0 (the circle). The form Eq. 2.23 is especially useful in @astmical orbit problems,
since it will turn out that orbits of planets and comets aiarcentral star have a solution of this type with the
star at one focus (and nothing at the other focus). For eltipis is easy to show by plugging éh= 0, it that
the semi-major axia=¢/(1— €?). (Note we usé rather tharain the above definition sinagis well-defined
for all of the conics).

For any point given by eq 2.23, the distance to the origindad the distancd to a vertical line ak = xg
is
Xo + Xpecosf — £ coso
1+ecosd
If we choosexg = k= ¢/e, this reduces tal =r/eorr = ed, so our conic is the locus such that (distance

from focus) =ex distance from the lin& =k, called thedirectrix ; this works for any of the ellipse, parabola
or hyperbola; though the directrix is “at infinity” for thercle e= 0.

d=xy—rcosf = (2.24)
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Altogether there are (at least) four possible ways of defjive conic sections: one is the “plane slicing
a cone” definition; the second is using the distances-froangroperties; the third is via quadratic equations
in Cartesian coordinates, and the fourth is as above. (#stakme straightforward but fairly long algebra to
prove that all of these do actually end up with the same faufilgurves, which we won’t repeat here (see
e.g. Thomas Chapter 10) ).

2.3.2 Arc length and area in plane polar coordinates

Given a curve in polar coordinatesias- f(0), we can get the arc length in two ways: firstly we can put this
into the parametric representationky f(6)coso,y = f(6)sin@ wheref is the parameter (which behaves
like t in the examples we saw before). If we differentiate the apaechave

dx df dy df
Fri —f(08)sin6+ @cose d0 = f(8)coso + 90 sinf (2.25)
Inserting these into equation 2.11 for the arc-length, we ge
o _ [y (4 (2.26)
de de /) ~’ '

therefore the arc-length of the curve definedrby f (6) between endpoints given /= 6; and6 = 6, is

2
\/ —) do (2.27)

(We can get the same result geometrically by drawing a segofi@curve from(r, 6) to (r 4+ dr, 6 + 86),
also drawing the circular arc through 6), and applying Pythagoras’s theorem to the small trianglelteg).

Warning: the above is clearly different from Equation 2.14 which g#ve arc-length for the case
y = g(x); comparing them, the second term looks the same, but thedirst above isf (8)? instead of 1.
The reason is that in polar coordinates, a small change déatyshifts our point by a distanaad6 in the
“circumferential” (around-the-origin) directiomot just 6. We will see a lot more of this sort of thing in
later sections where we deal with 3-dimensional polar civaites.

2.3.3 Areain polar coordinates

If we are given a curve = f(8), it is straightforward to evaluate the area of the sectomigedl by two
straight linesd = a, 6 = b and the curve = f(6) : by considering an interval frortif (8y), 6) to (f (60 +
00),60+ 60), if 66 is small this area approaches an isosceles triangle with demensiorr = f(6) and
widthr 56, so the area igr26.

Thus, the area inside a curve defined in plane polar coorinbetween anglé < 0 < 6, is simply

1 r6

=3/ r(8)?de . (2.28)

Warning: You need to beware of zero-crossings herer(#) goes negative so the curve has several
“petals”, you need to be careful not to count the same petaletat anglest apart. If this happens, it's
advisable to sketch the curve, break the integral into bldétahunks where does not cross zero, and add
these up. It is always non-negative, there are no problems.
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Example 2.2. An easy example is the circle= a: inserting 6, = 0,6, = 2t for the endpoints (as
explained earlier) gives us

2
A= %/O a2d0 = 2. (2.29)

giving us the familiar formula for the area of a circle.

Example 2.3. Another example is theardioid defined byr = a(1+ cos8); this curve has real-world
applications since many microphones and radio antennas dalirectional response given by a cardioid
function. Inserting this into 2.28, and using the doublglafiormula we easily get the aregarraz.

2.4 Surfaces in 3 dimensions

In the previous section we looked at parametric representabf a curve in 2 or 3 dimensions, generally
written as(x,y,z) = (f(t),g(t),h(t)); there we had 2 or 3 functions (one per coordinate)rmé parametet.

A further generalisation is to definesairfacein 3-dimensional space; a plane is the simplest example,
but in general we will deal with curved surfaces. We will skattit requireswo parameters to describe an
arbitrary surface, instead of the one parameter we had fanaec

Now we’ll call the parametera andv, and as before we need 3 functions of these to define thg 3
coordinates of our surface in 3-dimensional space, so wa ga&tametrised surfaceas

x=f(u,v), y=9(uv), z=h(u,v) ie r=r(uyv). (2.30)

If we pick a fixed value fow, sayv = v, and allowu to vary, then we just have a one-dimensional curve
(on the surface) as we vaty If we now choose& = vp+ Av and varyu again, we get another curve which
is “close” to the first one if the functions are continuousd ame have a “ribbon” of surface bounded by
the two curves. Repeating for lots @f's we see that we sweep out a 2-dimensional surface (calliit S)
3-dimensional space, as long as the curves/fervy andv = vp + Av don’t coincide. Technically we can
define the partial derivatives

or _ (91 9g oh\  or _ (9t 9g oh 2.31)
du \du'du'du)’ ov  \dv' ov’ v '
and as long as these two vectors are not parallel at any peintpcus ofr (u, v) will in fact be a surface, not
a line. We can see that both of the above two vectors are girectangent to the surfacerdu,v). We can
also take the vector product of these two,

_ﬁr or

N=350" av

(2.32)

This cross-produdtl will be non-zero if the two partial derivatives above aretbnbn-zero and not parallel.
AssumingN is non-zero, it must be mormal vector to the surface S, because both the partial derivatives are
parallel to the tangent plane to our surface at the pdimtv), andN is perpendicular to both of them.

Thus, if we are given a surfacgu, v), and given a point on the surface defined by valwesv), we have
a clear procedure for finding the tangent plane to the sudati®e corresponding point: we first evaluate the
point in the surfaceg = r(up,Vp); next we evaluate the two partial derivatives at the samatpand take
their cross-produdil as above; thus in the usual vector notation for a plane thr@ugjven point normal to
a given vector, the equation for the tangent plan@ isrg).N = 0.
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(Note: if instead we are given a point in the surface by defjria (x,y,z) space coordinates, we will first
have to find the values diup, Vo) which map onto that poirttefore we evaluate the partial derivatives; in
general that may not be simple to do, but it usually will behia tase of test questions.)

We can also use vectors to calculate the area of a parametféce given by (u,v): if we take the four
pointsr(u,v), r(u+du,v), r(u,v+dv), r(u+du,v+dv) , these define an infinitesimal parallelogram with
sides%du and %dv; as we saw from the definition of the vector product in Chafitethe arealA of this

parallelogram is
or or

au " av
Thus, integrating the above with respect to botluafwe get thesurface areaA of our parametric surface

) /]

where the domaiD of integration is the appropriate domain ofv. (Note: if the surface is described
geometrically, we will need to work out limits amv to cover the described surface).

dA= ‘ ‘ dudv (2.33)

or or
% X 0_\/ dudv (234)

In the special case where our surface is giver ash(x,y), we can just substitute= u, y = v into the
above: then the two partial derivative vectors becqh®, dh/dx) and(0,1,dh/dy), and the surface area

becomes
an\?2 [/oh\?
A_//D\/<&) +<W> +1dxdy (2.35)

where the integral is over some given domairjm.

Example 2.4. A good example of the above is the area of a sphere: a paraatéir of a sphere in 2
parameterg$0, @) is

Xx=asinfcosp, y=asinfsing, z=acosf O<O<m0<@<22n (2.36)

(It is easy to show that this satisfig§+y? + 22 = a2, so any(x,y,z) above does lie on the sphere. I'll state
without proof that the limits given above define a unique niagfrom a point on the sphere th ¢. We will
meet this again later when we come to spherical polar coates).

Given this, evaluating the partial derivatives, we hdvéd 8 = (acosf cosp,acosf sing,asing), and
dr /0@ = (—asin@sing,asin@cosy,0). The cross product of these vectors is
N = (a2sir? 0 cosp, a?sin? 8sing, asinf cosh) which is asinfr, and has magnitude?sind. Then our

surface ared of the sphere becomes
2n s
/ (/ a2sin@ d9> do
0 0

2m
/0 [—a?cosh) T dp

A

2
2a% do
0

= 4ma®

2.4.1 Parametric forms of common surfaces

To conclude this chapter, I'll give some specific exampleparimetric forms for common surfaces. These
will turn out to be useful later, when we come to evaluategraés over specified 2D surfaces in 3D space:
the parametric form is usually the easiest way to do this.
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A plane in 3D can be expressed in parametric form as
r(u,v) =ro+ua+vb

whererg is a point in the plane, anal b are any two vectors parallel to the plane. Here if we take <
u,v < o we get the whole infinite plane.

If we want a finite parallelogram with one cornerrgtand two adjacent sides b, we can simply put
limits0<u<1,0<v<1inthe above. (A rectangle is a special case of this).

Finally, I'll repeat the parametric forms for a cylinder,tere, ellipsoid and hyperboloid which we met
briefly in Chapter 1.

Implicit form Parametric form
Cylinder X4y =a? (x,y, 2) = (acosf, asinb, 2) Parameter§, z (2.37)
Sphere X +y?+7Z=a’ (asinfcosp, asin@sing, acosd)  Parameter, ¢ (2.38)
2 2
Ellipsoid % + é + 2= +1 (asinBcosgy, bsinBsing, ccosl) Parametere, ¢ (2.39)
. Xy 7 . N
Hyperboloid P + Ra 1 (acosu, bsinucoshy, csinusinhv) Parameters,v (2.40)

In the above, the choice of the names for the two parametedfgistly arbitrary, but follows common
conventions.

Itis easy to show that each parametric form above satisfeeisitplicit-form equation, just by substituting
and using sifA+ co$A = 1 or cosBA—sinf? A = 1. It's not so obvious to see how to go the other way;
but the parametric form for the sphere falls out naturallyewlve come to spherical polar coordinates; the
ellipsoid is a simple “stretch” of the sphere; and the hypéstdl comes from replacing sin with sinh etc in
the ellipsoid.
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Chapter 3

Vector differentiation, the [ operator,
grad, div and curl.

Last update: 20 Oct 2010.

Syllabus topics covered:
1. Vector fields
2. Grad, div and curl operators in Cartesian coordinatesa@ydiv, and curl of products etc.

Here we cover differentiation of vectors. Note that thigeti from the gradient introduced in Chapter 1,
where we obtained a vector by differentiating a scalar field.

3.1 \Vector functions of one or more variables

(See Thomas 13.1)

In many physical contexts one is interested in vectors thay with position or time. For example, the
position of a point can be described by a vectorhus, if we consider a moving particle, its position can be
described as a function of tinidy the vector (t), and its rate of change with respect will be the velocity
(which has magnitude and direction, i.e. is a vector: its mitage is the speed). The position vector is then
a function of one variable.

Another context is where we have a vector defined at each,magE (r) = F(x, y, z) and a curve with
a parameteu, say, so its points aré(u), y(u), z(u)). Then we can define a vector functionwfF(u) =
F((x(u), y(u), z(u)). We can deal with this and the moving particle case as follows
A vector function of a scalan, F(u), can be defined by specifying its components as functioms of
F(u) = (fu(u), f2(u), fa3(u)).

The derivative &/du of F with respect tas is then:

¢k _ (dh dfy dfe
du \du’du’du)/’
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This simply goes back to the fundamental definition of a denre:
de . F(u+du)—F(u)
— = lim —————,
du su—0 ou

Clearly one can compute higher derivatives, such&/du?, by differentiating the components &fthe
required number of times.

Example 3.1. If r(t) is the position vector of a particle, as a function of timéhen d /dt is the velocity
v of the particle. Also d/dt = d?r /dt? is the particle’s acceleration.

Example 3.2. The continuous parametecan take all real values. Write down the derivativegdi and
d?r /dt? for the vector = (sint)i +tj. Also, sketch the curve whose parametric equationssr (t).

The first and second derivatives are
dr
dt
d?r
dtZ

(cogt)i+j,

(—sint)i.

The sketch is shown in Fig. 3.1.

2

— 2

Figure 3.1: Sketch of the curve defined parametrically by (sint)i +tj

Itis easy to prove, by writing out the components and calgdierms, that iF andG are vector functions
of u, then

TR TR T
Proof:
dFG) _ d
0 = gy faot f202+ fags)
_ dgl dgz dgg df; df; dfs
= flm—FfZE—FfSE—Fmgl—Fmgz—Fmgs

dG dF
= F—+—0G. .E.D.
du + du Q
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It's also straightforward to show that cross products whkk same wayExercise 3.1. Sketch the curves
whose parametric equations are

(@)r = (3sinmt)i + (2costt)j
(b) r = (cosrt)j
(c)r =ti+1t%k

(- <t < ), and write down the derivatives gdt and d'r /dt? where they are defined. O

If Fis a vector function of more than one variable, $ay F(u, v), then it is straightforward to define its
partial derivatives with respect toor v, in terms of partial derivatives of its components. Thus gicample,
if F= (fo(u,v), f2(u, v), fa(u, v)), then

OF _ (01 0 0
ou \du’'du’du)/’

We have already met an example of this for the surfaeer (u,v) in Chapter 2.

3.2 \ector Fields

(See Thomas 16.2)

For the rest of this course, we shall be concerned mostly vattors and scalars which depend on position
in three-dimensional space, i.e. which are functions aéf¢hrariables, y, z. We have already met a function
f(x,y,2) wheref is one number (a scalar); from here on, this will be callestalar field, where the word
“field” means that it is a function ofx,y,z), and the “scalar” means the function value at each point is a
scalar.

( Note : Sometimes things may depend also on a fourth variable, aadimet, or we may only be
interested in their values on a particular patl) wheresis a parameter; but this doesn’t change the key
results.)

A vector depending on position in 3-D space is said to cautstiévector field. We write a vectoF that
varies with position as
F=F(XYy,2) =F(r)
An example is shown in Figure 3.2. In order to actually speaifrector fieldF, we need to write it out in
terms of its components, each depending on position, so

F = (FR(xY2), R(xY.2), F(xY,2)
= Fl(X, Y, Z)I + FZ(Xv Y, Z)J + F3(X7 Y, Z) k

Clearly this is rather cumbersome so we’ll often wriér) or just F; but remember to actually calculate
things you'll often need to write it out in full.

We have already met one example of a vector field: given astiald U, we have defined the gradient

as Jou ou ou
U = WI + a—yj +E

Here[U is itself a vector, and it (usually) depends on positionts® actually a vector field.
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Figure 3.2: Example of a flow. In this case the speed and dreet each point is a function of the position
(X,y)

A physical example of a vector field is the velocity in a flowihgd (e.g. the water in the oceans, moving
because of currents and tides; or the air in the atmospherenmbecause of winds). The velocity at any
point in the fluid is a vector quantity — it has magnitude anéction. If we attach a velocity vector to each
point of the flowing fluid, we have a vector field defined in thgiom occupied by the fluid.

Another physical example is a magnetic field; now things atenecessarily moving with time, but the
magnetic field has a direction and a strength at each poipioes so at each point in space we have a vector;
and this vector (in general) varies with position so it is ateefield.

We can add vector fields and multiply them by a constant in bwéoais way, so iF andG are two vector
fields thenF + G is also a vector field, and KX is a constant theAF is also a vector field.

Given a vector field, we could of course now differentiate teetor field with respect to each of the
coordinategx, y, ) in turn, in the manner described in the previous sectiors, giies us a total of 9 partial
derivatives

oF JF 0F1 0F3
ax’ ox' gy’ oz

(In this course, we will be assuming thHats a smoothly-varying function of position, so all theseidmives
exist at all points of interest, except possibly for one or two singular points ).

Note: the set of all 9 derivatives of a component by a coordinatmfoa quantity of a new kind, called
atensor. These are used in fluid dynamics, solid mechanics andvijatior example. However, in this
course we willnot deal with tensors, we will restrict ourselves to forminglacand vector quantities from
these 9 derivatives. To do this, it will turn out that we hawddke certain special combinations which are
“well behaved” if we rotate the,y, z axes; these will turn out to be forming the dot and cross petsiaf [
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with F , where
7} 7] 7]
O=i—+j—+k—=—
ox + ay + 0z
is the operator calleddel” which we met previously in forming the gradient of a scaldliote again that]
is not a true vector (because on its own we can't define itstteagdirection), but it is a vector differential

operator.

3.3 The Divergence of a vector field

(See Thomas 16.8)
Supposd=(x,y,z) = F1i + F,j + Fsk is a vector field. The divergence Bf written divF or O - F is defined to
be

_O0F  O0F  O0FR3

Here divF is a scalar (there are rigj,k’s in the result) and generally depends on position, so itgsaar
field.

We can also get the above result if we write auandF in components,

0 0 0 . .
0-F= (|0_><+Ja/+kd) (F1i + Fpj + Fsk)

and write out all 9 terms then use the properties- 1, i.j =0, etc.

Note that, given a scalar fielfl, we found a vector fieldlf. Here, given a vector fieléF, we have
produced a scalar field - F .

We can also writé] - F as divF. These notations are completely interchangeable.

It is easy to show, by direct calculation, that div behavesxgected for addition and multiplication by a
constand, i.e.
O-(F+G)=(O-F)+(O-G6) ,

The geometrical meaning of the divergence is as followssitar a point and consider a small closed
surface surrounding that point: if the divergence Hiis positive atr, then on average the vector fididis
pointing “away” from the point and out of the surface. If thigaefgence is negative, then on balarkeés
pointing towards the point and into the surface. (See Fi8)) 3 his idea will be made precise when we come
to the Divergence Theorem in the next Chapter.

A vector field F for which O - F = 0 everywhere is calledivergence-freeor solenoidal The reason
for the namesolenoidalis historical: that a solenoid is a coiled wire that produaenagnetic field, and a
magnetic fieldB is an example of a field that has- B = 0 everywhere (this is an observational fact, and
arises because magnetic monopoles have never been fourathinsmarches).

Example 3.3. If F = 3xy?i + €/ + xysinzk, calculate] - F.

I(3xy?)  9¢  d(xysinz)
O.F= (7x +a—y+T—3y2+xycosz

Exercise 3.2.If F = (y—X)i + (z—Y)j + (x— 2)k, calculatel] - F. [Answer: -3] O
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Figure 3.3: Example of a vector field with positive divergeifeverywhere)E = xi +j.

3.4 The Curl of a vector field

(See Thomas 16.7)
The curl of a vector fieldr is defined to be

0F3 JdR)\. 0F1 O0F3)\. oF  0F
OxF=(—=—"—-—== —_——— — - — | k. 2

x (dy dz>l+<dz dx)l+(dx dy) (3.2
Note that curlF is a vector, since there arg,k on the RHS; and it generally depends on position so it’s a
newvector field.

We can write] x F as curlF — again the two notations are completely interchangeabls.cbnvenient
to remembef] x F in terms of a determinant like the one fox w:

i j k
OxF=|d/dx d/dy 0d/oz|.
F F Fs

Itis easy to verify, by writing out the determinant in fulhat this is equivalent to the original definition.

Itis also easy to show, by writing out the components, thet@ are any two vector fields,
Ox(F+G)=(0x F)+(O0x G)

and if A is any constant then

Ox (AF)=A(0OxF)
Note that the equality abovanly works if A is a constant (independent xfy,z): see the next section for
more general products.

The geometrical meaning of the curl is as follows. Looselgadng, if at some point in space the
component of the curl in the direction is positive, it means that in the vicinity of theipoand in a plane
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normal ton, the vector field tends to go round in an anticlockwise dicecif one looks along vectan. If

the component of the curl were negative, it would mean that#ctor field tends to go round in a clockwise
direction. (See Fig. 3.4.) This idea will be made more peeiben we come to Stokes’s Theorem.
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Figure 3.4: Example of a vector field with positive curl (irethdirection):F = xj — i

A vector fieldF for which O x F = 0 everywhere is calledurl-freeor irrotational.

Example 3.4. The velocity in a fluid isr = yi —xj +0k. FindO x v.

i ] k
Oxv=|d/ox d/dy 0/dz|=i(0—0)+j(0—-0)+k(—-1-1)=—-2k.
y —X 0

Exercise 3.3.1f F = (X2 4+ y? + )i + (x* — y?2)j + xy&, find 0 x F.

O
Exercise 3.4. Find the divergencé€d - F) and curl( x F) of the following vector fields:
F =% +x3 — 3
F = X% — 2xyj + 3xz
F = 0(1/r) wherer = (2 +y2+2)Y2 £ 0.
O
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3.5 Grad, Div and Curl of products

(See Thomas 16.7 and the exercises to 16.8)
We can now consider the application of grad, div and curl tadpcts. We saw above that grad, div and curl
behave in the “obvious” way for addition and multiplicatiby a constant.

However, we can also multiply scalar and/or vector fieldstbgr (in pairs) to get new scalar and vector
fields. Altogether there are four ways to do this, as followfsiwe have two scalar fieldd (r),V(r) we
can ordinary-multiply them (at each poinjtto get a new scalar fieldV = U (r)V(r); likewise for a scalar
field U(r) and a vector field=(r) we can use ordinary multiplication to givéF = U (r)F(r); the value is
a vector, so this is a vector field. Also, if we have two vectelds F,G we can define their dot product
F.G = (F(r)-(G(r)) and their cross produétx G in the obvious way, by taking the dot or cross products of
each field at theame pointr. ClearlyF - G is a scalar field, ané x G is a vector field.

Note: in each of these products, the valuedJoV,F,G are taken at theamepointr in the product. In
longer equations, it is common to not bother writing in aé th)’s, because if something is defined as a field
then we know it is a function af.

We can now apply grad, div and curl to these products, but famlthe following allowed combinations:
to apply grad, we have to have a product which is itself a sd¢@i: that can be either an ordinary multiple
of two scalar fields, sayV, or a scalar product (dot product) of two vector fielHsG.

Div and curl can only be applied to a vector field, so the pdegiboducts we could have look likéF or
the cross produdt x G above.

If we were dealing with functions of a single variable, theidgtive would just give the well-known
product rule for derivatives,
d(fg) .dg df
ax fdx Ty
Some of the vector cases are just like that, but some are noonplicated: we next give the results, and
discuss the details afterwards. There are six cases as wfleed above (two each for grad, div and curl).

(3.3)

For grad of products we have:

ouv) = u{@v)+Vv(Oou) (3.4)
or graduVv) = UgradV +VgradJ
OF-G) = Fx(OxG)+Gx(OxF)+(F.O)G+(G-O)F (3.5)

For div of products we have:

0-(UF) = U(O-F)+(0U).F (3.6)
0-(FxG) = G- (OxF)—F-(0xG) 3.7)

and for curl of products, we have:

Ox (UF) = U(OxF)+(0U)xF (3.8)
= U(OxF)—Fx(OU)
Ox (FxG) = F(0-G)+(G.O)F-G(O-F) - (F.O)G (3.9)

We see above that equations 3.4, 3.6, 3.7 and 3.8 look quiitasito 3.3, except for the minus sign in
3.7 and the possible minus sign in 3.8.
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Note also that Egs. 3.4 and 3.5 are symmetrical in the twalbes, while 3.7 and 3.9 are antisymmetric,
i.e. they must change signi, G are swapped, due to the antisymmetry of the cross product.

Note: if you setU (x,y,z) = A =constant in the above, that is a (very boring) but legal sdahl with
0OU = 0 everywhere; then you'll see Egs. 3.4, 3.6, 3.8 reduce to theoas cases of multiplication by
a constant which we've met before. But for multiplication &#yon-constant scaléf, the second terms
involving U appear on the RHS.

The other two equations 3.5, 3.9 are more complicated, avmvie the new operatofG.0): this is
defined so for a scalar fieM, if G = (Gy, Gp, G3),

+G3d)v Glav ov ov

7} 17}
(G.D)V (Gld +Gy— dy ) ox Gza—y + GBE )
For a vector field~, the notatio G.00)F is to be interpreted a&.00F;, G.0OF,, G.0F;3), takingF = (F1, R, F3);
Thus writing out the whole thing, we have
0F1 0F; 0k R, R R 0F;3 oF3 0F3
+G +G , G +G +G , G +G +G
ox 2ay 397 TLax P2y T8 Py TR 3az)
This is essentially the directional derivative of vedtain the direction ofG, i.e. it is|G| times the derivative
dF/dsalong the direction of the unit vector parallel®

(G.OF = <Gl

(Warning: the form of this definition will not persist in culinear coordinates, but the directional deriva-
tive will remain the same).

Note: you are not expected to memorise Eqgs. 3.5 and 3.9, but you eayvbn those formulae in an
exam question. You should know the definition(&f.00)F above.

Example 3.5. Leta be a constant vector, amd= |r| as usual. Then, using Eq 3.8,

Ox(ra) = r(Oxa)—ax0Or
o2t
r

since the curl of a constaatis zero, andJr =r /r (as in Coursework 2).

Example 3.6. Leta be a constant vector. Then, using Equation 3.9,

Ox(axr) = a@-r)+(r.0)a-r(0-a)—(a.0)r
= 3a+0-0-a
= 2a

(On the top line, the two middle terms differentiate the ¢anta so are both zero, and it is simple to check
from the definitions thall - r = 3 and(a.0)r = a.)

Proofs:

All of the equations 3.4 to 3.9 can be proved directly from thedinitions by inserting components,
expanding out using the ordinary derivative-of-produtt mnd doing some rearrangement; this can be fairly
long, but is not difficult.

For a couple of examples: firstly for Eq. 3.4 it is simple, weéda

0 0 ]
IUV) = i UV)+ (V) kg

% (UV)
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A ouU .oV ou ov ouU

u id—v+'ﬁ—v+kﬁ—v +V id—U+'0—U+kﬁ—U
ox Jo'?y 0z ox Jay 0z
uov)+Vv(Qu) QED.

Next we'll prove Eq.3.8: the produttF is a vector field with componentt) F1, UF,, UF3); inserting
those into the definition of curl,

(0 17} [0 17} 17} 7}
. R ou ok ou _ oF ou R ou
'<U0_y+F36_y_UE_FZE) ) <UE+HE_UW_F3W>

7)) ou oF1 ou

Now we just re-order the 12 terms so that the six with @5 come first, then the six with aRdU come
next; and from the definitions, it becomes clear that thelrésu

Ox (UF) = U(DxF)+(0U)xF  QED.

The others can be proved in a similar way, though it gets daitg for Egs. 3.5 and 3.9. Much shorter
proofs can be given usingdex notation, but this is no longer on the syllabus.

Note: As always, be careful what is a scalar and what is a vector.éRadmer that in an equation
(expressiorl) = (expressior?) 4 (expressiorB) + ...

expressions 1,2,3 ... must be either all scalars or all vecséince you cannot add a scalar and a vector. Check
that you understand that in the above equations, all theesgfans are vectors for 3.4, 3.5, 3.8, 3.9 (because
grad() or curl() give a vector result); while they are scalfar 3.6 and 3.7 because div gives a scalar result.

3.6 Vector second derivatives: applyingl twice

We also have a second set of identities arising from appltyirogof grad, div or curl in succession. Here grad
U and curlF produce vector fields, to which either div or curl can be aggiliwhile divF produces a scalar
field, and then we can apply grad to that. This gives a totavefdilowed cases, which are as follows:

divigrady = 0O-(0U)=0%U (3.10)
curl(gradu) = 0Ox(OU)=0 (3.11)
div(curlF) = 0O(OxF)=0 (3.12)
curlicurlF) = Ox(OxF)=0(0-F)—0% (3.13)
graddivF) = O(0-F)=0Ox (OxF)+0%F (3.14)

We see here that two of these cases (curl grad U, and diFganle identically zero ; this is true for any
fields, as long as they are sufficiently well behaved that tiréigd derivatives commute, see below. These
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two zero cases can be helpfully memorised by the fact thgtvloeild also give zero if] was replaced by an
ordinary vectom ; but beware, this sort of rule is not applicable to every eiguecontaining.

The first equation above Eq. 3.10 introduces a new opefataralled theLaplacian:; this is very im-
portant in a wide range of physical problems, and we will meextensively in Chapter 7. In components,
combining the definition of grad U from Chapter 1 and pluggimat into Eq. 3.1, we get simply

92U N 92U N 92U
ox2 = gy2 = 9z

0U = (3.15)

This Laplacian operator can be applied to either a scalat iel vector field, producing a field of the same
type; in the above is a scalar field an@l?U is another scalar field.

For a vector fieldF, to get[?F we applyd? to each component &f separately, giving
[?F = i0%F1 + ] 0%F + kO%F3
so[J?F is another vector field.

Also note that the last two of the above equations 3.13 andl &4 just a rearrangement of each other,
giving a relationship between curl cf| grad divF and0F.

All of the relations above can be proved by direct substiute.g.:

Proof of 3.11:
i ] k
d/ox d/dy 0/oz
dU/dx dU/dy odU/oz
B (azu 02U 9 U U 02U>_

curl(CU)

Yoz 9z9y’ 0z0x O0xdz IxXdy Oydx

[Note, we assume that the functibhis sufficiently well-behaved for its partial second dernves to com-
mute.]

The relation curl grad) = 0 is particularly useful, since it is often interesting to agkven some vector
field F, can we find a scalar field such thatdU = F ? If we can, this simplifies things from 3 functions of
position to 1 function.

Now we can show that if our giveR has curlF #£ 0, it is not possible to find such a scalar fiédd as
follows: choose any scalar field, and define a vector field = OU. We'd like to find aU such thaH = F.
But from Eq. 3.110 xH =0 x (OU) = 0. ThereforeH # F: so, if curl F # 0 then it isnot possible to
expresd- as the gradient of any scalar fidld

The converse is also true: we will show in the next chapter itheurl F = 0 everywhere in a given

domain, then weanfind a scalar field) with OU = F: and we'll also show how to construct the desitéd
using a suitable integral. This requires vector integrgtiwhich we’ll do in the next Chapter.
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Chapter 4

Vector integrals and integral theorems

Last revised: 1 Nov 2010.

Syllabus covered:
1. Line, surface and volume integrals.
2. Vector and scalar forms of Divergence and Stokes’s tlegr€onservative fields: equivalence to curl-free
and existence of scalar potential. Green’s theorem in thagl

Calculus | and Il covered integrals in one, two and three disienal Euclidean (flat) space (i, R?
andR?). We are still working inR® so there is no generalization to be applied to volume ordriplegrals,
but we will generalise one dimensional integration fromraight line to an integral along a curve, and we
will generalise two-dimensional integration from a regiora plane to a curved surface.

We will also be working with integration of vectors, though finany cases we will be using a scalar
product so the final quantity to be integrated becomes arsd¢althe cases with a scalar product:

J f(x) dx generalizes td,, F - dr on a curves, called dine integral (section 4.1).
J [ f(x y)dxdy generalizestd', F-dSover a surface”, called asurface integral (section 4.2).

We will then have to study the generalizations of

df dx= f(b)— f(a) 4.1)

a dx o ’ )
called the ‘fundamental theorem of calculus’, which we usehie proofs. This theorem relates a one-
dimensional integral to a (pair of) zero-dimensional easibns at the two endpoints= a,b. The higher
dimensional versions do the following:

Stokes’s theorem relates the surface integral of a curl fnaihtegral (2 dimensions to 1) around the
edge of the surface: see section 4.6.

The Divergence Theorehmelates the volume integral of a divergence to a surfacgiat¢3 dimensions
to 2) over the boundary of the volume: see section 4.4.

There is also a special case of Stokes’s theorem where tfaceus a plane: this is Green’s theorem

LFirst discovered by Joseph Louis Lagrange in 1762, therpiexigently rediscovered by Carl Friedrich Gauss in 1813, bgrGe
Green in 1825 and in 1831 by Mikhail Vasilievich Ostrograglskho also gave the first proof of the theorem. Thus the resalj be
called Gauss’s Theorem, Green’s theorem, or Ostrograsiskgorem.
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relating the integral of a curl to a line integral (2 dimemsdo 1): see section 4.5.

[Aside: All these are in fact special cases of the generdte3ts theorem which relates an- 1 dimen-
sional integral of a field to the dimensional integral of its derivative. Here the field is agelization of a
vector field called arfin — 1)-form field.]

Finally we will discuss the application to potentials, ahd proofs.
Before moving on to line and surface integrals, we consigectase where one wants to integrate a vector

functionF(u) of one variabley, with respect tau. The integral can be calculated simply by integrating the
components (in Cartesian coordinatesfef (Fi, F, F3):

/F du (/Fl du, /ngu, /ngu> 4.2)

i/Fldu+j/F2du+k/F3du (4.3)

Integration of a vector in this case is just a set of threeradi integrals. The restriction to Cartesian
coordinates can be overcome by looking at the definition atorgal terms: we go back to the basic definition
of integration, which leads to a geometrical picturezoE f(.f Fdu (see Fig. 4.1):

G= qu— lim ZF )oup .

a upHO

F(u+ duy +---)oun

b
GE/F

lim Z F(u)du,

N—>oo 6up—>0

F(u + duq)dusg
F(u)duy

Figure 4.1: Geometrical picture & = f,f Fdu= lims,, .o Z'B':l F(u)dup .

Example 4.1. If v(t) = dr/dt is the velocity of a particle, as a function of tiiegthen

12 t2 dr r(tz2)
/ vat = —dt:/ dr =r(t2) —r(t)
t t dt r(ta)

Note here that is the vector velocity of the particle, so the time-integsahe vector distance between the
two end-points. If we had pwinstead ofv in the integral, then the result would be a scalar equal tadtze
arc-length of the curved pattft), as we met in Chapter 2.

Warning: there seems to be a common belief that an integral alwaygsepts an area or volume.
This comes from 1-D integration wheffef (x) dx can be shown as an area between a cyevef (x) and the
x—axis; or in 2-D integration the resufth(x,y) dxdycan be expressed as a volume betweerxshglane
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and the surface = h(x,y). However, when we take general line and surface integragdbults are not
necessarily areas and volumes; we will see that these aitegan represent various things such as distance
travelled, work done by a force, flow of a fluid crossing a scefaetc, but there is not always a simple
geometrical picture for the result of an integral.

4.1 Line Integrals

(See Thomas 16.1 and 16.2: note that Thomas begins by deéirsoglar integral f|dr|, in the notation
below. | come back to this at the end of this section.)

Suppose- = (F1, F, Fs) is a vector field defined in some region of space, & a parametrized curve
through that region fromy to r, so that? is given by

rt) =(9(t), h(t),q(t)) (L <t<ty),

andrq =r(t1), ra =r(t2). Then, one can define the line integral

r2
F-dr

ri

to be

T dr T dg dh dg
F(r(t))-=—dt = F—+F— — ) dt 4.4
Creay-go = [(RE g Ry ) (@.4)
Warning: do not forget to write the components Bfin terms of the parametdr so thatt is the only
variable that appears inside the integral!. Hence you mugt w(r) = F(r(t)), so we replac&i (X, y, z) by

F1(g(t), h(t), q(t)), and so on; then we evaluate the dot produck @nddr /dt, before finally integrating
overt to get the numerical answer.

Second warning: it seems to be easy to confuse where one has ta @g@nd where one uses (tt; you
have to evaluatE at positionr (t), while the line-segmerdr is given by(dr /dt) dt.

The above is just a version of the fundamental definition ofraegral as the limit of lots of small
contributions. In this case it's the scalar product§ @f) with small displacemenidr along%”:

ro N
F.dr = lim F(r)-or
~/r1 6rp—>0le ( ) P

If we are given a geometrical description of the curve with@yparametrization, we have to fifitd a
parametrisation of the described curve to actually evaluate the integrallires, circles, ellipses and so we
can use, for example, (1.33) and (1.18)—(1.20).

Example 4.2. Evaluate the integrgl F - dr for the vector field= = —4xyi + 8yj + 2k, from the origin to
the point(2, 4, 1) along the following three paths:

1. along the curve =ti+t% + 3tk, 0<t < 2,

2. from the origin to(2, 0, 0), then from there td2, 4, 0), then to(2, 4, 1), along straight lines [Note that
the answer will be the sum of the three parts: a path may haxeraeieces, providing the next one
begins where the previous one ends.]

3. on the surfacex + y? = 32z along a line with constarny/x.

43



Note that only for the first of these do we have the paramdiozaiven: in the second and third we'll have
to make a parametrization from the definitions.

. . . o[ .
1. In this case we are given the parametrised cuft)eas above, and from that we g&t =i+2+ %k,

andF(r(t)) = —4(t)(t?)i + 8(t?)j + 2k. The final bits we need is the- values at the given endpoints
rp =(0,0,0) andr, = (2,4,1); itis easy to see those are- 0 andt = 2 (solve the easiest equation e.qg.
x=t, and plug that in to the other two to check). Putting thinggetber, we have

r2 2 dr
/ F.dr F(r(t). 2 ot
ry t=0 dt

2
/0 (—4t% + 813 + 2K).(i + 2t + 3K) ot

[+ @@+ @3)]

2
/(1Z3+1)dt
0
— [3*+1t]2=48+2=50

2. Now our given “curve” is three straight line segments garend-to-end and we need parametrisations
for each, separately.
The first segment is front0, 0, 0) to (2, 0, 0). The straight line is, from the general form of Eq. 1.33
for the case of a line joining; andry, i.e.r =r1+t(ro—rq),

r=0+t(2), 0<t<1
Here we could call 2simply x, so
r=xi, 0<x<2

Along this line we have d=idx. To get the value oF we substitutey = z= 0 into the general form
for F, giving F = 2k. Taking the scalar produdg,- dr = 0 and hence this segment gives a zero integral.

In the second segment, frof8, O, 0) to (2, 4, 0), we similarly get

so along it, d = jdy. Substitutingx =2, z= 0 in F we haveF = —8yi + 8yj + 2k. SoF-dr = 8ydy
and hence this gives

4
| eyay= (4215~ 64
In the last segment, frort®, 4, 0) to (2, 4, 1),
r=2+4j+z«, 0<z<1
so along it we haverd= kdz, andx = 2,y = 4 givesF = —32i + 32 + 2k, soF -dr = 2dz and hence
this gives/y 2 dz= 2.
Finally adding the integrals from the three segments tagyetlve get the full line integral over our

given path=0+64+2=66.

3. Now we are integrating along a line in a curved surfacegtpeation for the line is not given explicitly,
but we are told two things which let us solve for it: the lindrighe surface # +y? = 32z, and our
line has constant/x soy = kx for some constark. Geometrically, our line will be the intersection of
a planey = kx (containing thez—axis) with the above surface. Since at the second end gpeirt and
y = 4, we needk = 2 soy = 2x. Substituting that in ¥ 4 y? = 32z gives & = 32z sox = 2,/z, and
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y =4,/z Now we have botlx andy in terms ofz, so we can useas the one parameter for our curve:
we have
r=27+4/7 +z 0<z<1 ,

where the limits orez follow from the given endpoints. Once we have a one-paramegression
for the curver (2), it is straightforward: we getrd= (i//z+2j /\/z+k)dz, while F(r(z)) = —32z +
32,/7 + 2k. Hence inserting those into Eq. 4.4, remembering to takedhtar product, we have

1 1
/()(—32\/2+64+2)dz:/0 (66— 32,/2) dz:[662—64z3/2/3]é=66—6—34 ,

which we could also write as 44

Note: in the above, we could alternatively have chosess the one parameter, and write= 2x,
z=x?/4 to getr = xi + 2xj + (xX*/4)k, and range & x < 2. It is straightforward to check that this
gives the same result §4or the line integral.

As well as giving some examples of how to calculate line irdbkg this example makes the important
point that in general the result depends on the curve, nbjusts two endpoints. We shall return to this
matter in Section 4.7, where we will find thatkfhas zero curl (irrotational), the resulting line integraly
depends on the two endpoints, not the curve between them.

Exercise 4.1. Calculate|- F - dr, whereF = 4yz — 37 + 2x%k, over each of the following curves from
(0,0,0)to (1,1,1):

@C: r=ti+tj+tk 0<t<1
(b)C: r=t%i+tj+t%k 0<t<1

If the vector fieldF represents &orce (e.g. gravitational force), then

r2
/ F.dr
ri

is called awork integral and its value is thevork done by the force for a particle moving betweenandr,
which equals the increase in energy of the body acted on. dduigrs because for each small movenamt
(small enough to be a straight line),dfis the local angle betwedhanddr, thenF cosf is the component
of forceparalleltodr, soF-dr = F dr cos is the work done by the force, along the small stepThe line
integral just adds up that work along all the small steps@lbie path, so the line integral is the total work
done fromr; toro.

If instead of representing a forcE,represents the velocity field in a fluid, anddfis some curve in the
fluid, then [, F - dr is called theflow along curves'. If ¢ is a closed curve, the flow is called tbieculation
arounds’.

Finally, note that Thomas's fornfi f|dr| is obtained if one assumes tHais parallel to the unit tangent

dr  |dr . . dr o .
vector to the curve, = E/ ‘ rrak at all points on the curve, sme(%dt =t|dr|, and in this case, taking= ft,

dr
F.— dt = ft-t|dr| = f|d
& jdr| = fld|

Thus Thomas’s starting point is simply a special case of greegal line integral.
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4.2 Surface integrals

(See Thomas 16.5 and 16.6, but be aware that Thomas startfibing the integral of a scalar, using what
is, in the notation belowj f|dS|. )

To define surface integrals, we now have to take into accdwaita small area on a curved surface has
both a magnitude and a direction (the normal to the surfas®)@ated with it, so we can represent a small
area as a vector, as we saw in Chapter 2.

Consider an are&in a plane (see Fig. 4.2a). ifis a unit vector perpendicular to the plane, then the
vector representing the are,is defined to be

S=5

Figure 4.2: (a) Normath to a plane are&. The vector area iS= Sn. (b) Normaln to a more general surface.
The vector area of the small surface elemer3s= dSn, wheredSis the magnitude of the area.

In the case of a curved surface in three dimensions (see,Av2)eed to pick a small arés which is
small enough to be approximated as (almost) flat, and defenegbtordS for that area elemeriSas
0S=9Sn ,

wheren is a unit vector normal to the surface elemé&t Note we are still using the convention that vectors
are written in bold type and the same symbol in ordinary tymans the magnitude, th@S= |3S|. In the
limit we shall write dSrather thamS. (Thomas usesalfor this dS.)

Note we still have a sign ambiguity in this definition, beaegher direction of the unit vector along the
normal line could be used. One case where we can fix the sidreisdse of &losedsurface, whera is
generally taken to be theutward-pointing unit normal vector. If the surface is not closed, we will héve
explicitly specify geometrically one of the two possibleeditions fom.

Now that we have defined how to represent a small area as arveaaan now define theurface
integral for a vector field= over a general curved surfacé:

/yF-ds - /yF-ndS . (4.5)

Such an integral is also called tfiex of F across area”. Since the quantity integrated is a scalar product
of two vectors, the answer is a scalar quantity.
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These surface integrals arise in a number of physical gitosit one example is the case whéreep-
resents the velocity field in a fluid, where the surface irakgepresents the volume of fluid crossing the
surface.” per unit time. Another example is i is a magnetic field, in which case the integral would be
themagnetic flwacross the surface’. (These results occur becalseoso is the component df parallel to
the local normah i.e. perpendicular to the surface; while the componefi pérallel to the surface (perpen-
dicular ton) does not contribute to the flux across the surface. Thud]ukef F crossing any small patch
of surfacedS s |F|cos6dS which isF - dS from the definition of the dot product. The integration thestj
adds up the contribution from all the infinitesimal patchiegyet the flux crossing the whole curved surface.

The double integrals in a plane that we met befgref (x,y) dxdy, can be thought of as integrals®ds,
where
F = fk and d&5= (dxdy)k

The tricky part is, once we are given a fidfdand a surface”, to turn the general fornf, F.dSinto a
double integral that we can actually do. We shall give sommeg rules after studying some examples.

We next look at three examples of increasing difficulty: amea simple plane case, the second a curved
surface where the integral is easy, and the third gives updtierns we need for the general case.

Example 4.3. If F = (3x, 2xz 3), evaluate the flux of across the surface’: z=0,0<x<1, 0<y<2
(where the normal is to be in the positizeélirection).

Here the given surface is a rectangle in #yeplane, so the normai is +k. We are told to take the plus
sign. We need to integrate oveandy with limits as above:

/FndS // (3% -+ (2X)0] + 3K).(0i + 0] + 1K) dydx_/ / 3dydx—/6dx 6.

Example 4.4. If the velocity field of a fluid isv = r—lzer, wherer is the distance from the origi® andey
is a unit vector at position pointing away from the origin, find the flukv-ndSacross a spher¢’ of radius
awhose centre is at the origin. (The outward normal shouldkert.)

In this case, the outward normal agdare the same vector, so

1 1
V.n:r_zer.er:r_z

(er.er = 1 because is a unit vector). On the given sphere of radajs = a, so

/ v.ndS= / — dS_ — X (Area of sphere of radiug) = ) 47ra2 =4n

using the fact tha{al—2 is a constant, so can be taken outside the integral sign.

Example 4.5. Find the flux of the field= = zk across the portion of the sphere+y2 + 2 = a2 in the
first octant (this is the A8-th of space in whicly, y andz are all> 0) with normal taken in the direction away
from the origin.

This example is easier in spherical polars (see later), lsutan do it in Cartesians. Write the required
part of the sphere as a surface /a2 — x2 — y2 (note that for a whole sphere we would also need the points

wherez = —y/a2 — x2 —y?, the square root being understood to be the non-negative dbensider the
displacement vector for a small change by taking the derivative af = (x, y, v/a2 —x2 —y2) as in section
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3.1. It will be

or ox oy 0z —X
(3_xdx_ (0_x’d_x’d_x) dx = <1, 0, 7%?‘2_)(2_)/2) dx (4.6)
and similarly a small change ingives a displacement

or . -y
Edy—(O,l, a2—x2—y2>dy' (4.7)

The magnitude of the corresponding area element is them diyehe area of a parallellogram with sides
(4.6) and (4.7), and the normal direction is perpendicddhem both, so we need their cross-product

1,0, —X  Jaxx {01, —Y  )dy
2 2 _y2 2 _x2_y2

X _ y .
I+ +k | dxd
<\/a2—x2—y2 \/az_xz_yzj ) y
ThusF - dS = zdxdy = /a2 — x2 — y2dxdy.

Now we need the limits on the variables. The first octant ofsihieere lies above the first quadrant of the
circlex? +y? = a2, z= 0, so we will have

a pyva2-x2
/ / Vaz—x2 —y2dydx.
x=0Jy=

0

das

The rest of the problem is just a double integral like thos€dhculus Il. We can do it by a substitution such
asy = va? — xZsiné which gives

/O @) / "2 02 & dE dx

£=0

and this turns out to bea®/6 using the double-angle formula.

Note that parametrization by a pair of coordinates will nltays give all the surface: for example,
consider the surface consisting of two touching perpendiaguares, one square with a vertex at the origin
and sides 1 along theandy axes, and the similar square in the z) plane: this surface cannot be covered
by any pair of the Cartesian coordinates, though it canyehsikplit into two pieces each of which separately
can be handled that way, and the results added.

The final part of the above example provides general methmdsifning a surface integral like Eq. 4.5
into a double integral we can actually do. We next look at &sas

1. Surface given by two parameteis, v).
2. Surface given by = h(x,y)

3. Surface given byg(x,y,z) =const.

Note that if we are only given a geometrical “description”tbé surface, we will need to put our surface
into one of the above forms before we proceed: which is eisiag depend on the surface, but usually the
two-parameter case is simplest.
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4.2.1 Surface integral: surface given by two parameters

First consider the case whetiee surface is given, or can be found, in terms of two pararseteeveral
examples were covered in Chapter 2. See also Thomas 16.@liagréms 16.55 and 16.56. For a surface
given by two parameters v we have:

r(u,v) =x(u, v)i+y(u, v)j +z(u, v)k .

Now we can do the surface integral as follows:

1. Calculate the partial derivativegsa and%.

or or
dS= <%) X (ﬁ_\/> dudv
As we showed previously, this vector is normal to the surfate has magnitude equal to the area of

the small parallelogram with four corners givenitiy, v), r (u+du,v), r (u,v+dv), r (u+du,v+dv),
so it is thedS we want.

2. Calculate the cross product

3. Express- in terms ofu, v usingr = r(u,v) as given above and substituting.
4. Form the scalar produ€t- dS

5. From the given geometry of the surface, work out approgfianits onu,v and perform the double
integral overdu anddv.

This gives us finally

/yF'dSZ/\,/uF(r(u’v))' (% X %) dudv

Warning: note that the cross-product above may be opposite to théreglquormal direction, so one may
need to take its negative (which is equivalent to just swaghie order in the cross-product).
Both for this reason, and for working out limits on the vated) it is a good idea to draw a sketch first.

For the standard surfaces such as cylinders, spheres @§bils we already know some parametriza-
tions, (1.28)—(1.31).

4.2.2 Surface integral: surfacez = h(x,y)

The second case to consider is where we have a surface givareaordinate is a function of the other
two, e.g.z= h(x,y). This is essentially a special case of the more general twarpeter case above where
x=u, y=V, z=h(u,v). Just using andy as the parameters, we get the surface as(x,y, h(x,y)), and
partial differentiation gives

or or

ox = (Loaax) o

- (0.1,0h/3y)

so the area element on the curved surfaeeh(x,y) is again the cross product of the above, which is

dS= (—oh/dx, —dh/ay, 1) dxdy

Next we evaluat&(r) on the surface using= (x,y,h(x,y)) again, we evaluate the scalar prodietsS,
and finally do the double integral with respecixg.
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(There are other similar cases if insteas given as a function of,z by x = g(y, 2) ; this is very similar
to the above except for swappinrgy, 2) .

Aside: Itis also useful to note that the unit normal to the surfaeeh(x,y) is

1
" \/(dh/dx)2+(dh/dy)2+1(_‘9h/¢7x, —dh/dy, 1)

Sincen is a unit vector, the angl@ this makes with the axis is given by

cos8 = k.n = 1/1/(dh/0x)2 + (9h/dy)2 + 1

The magnitude 8= |dS] is then
dS= /(9h/dx)2+ (dh/dy)2 + 1 dxdy = dxdy/ cosh.

This is not needed for the surface integral in the curreng chst we will make use of this result in the
next section .

4.2.3 Surface given byg(x,y,z) = constant

The third case of a surface integral is that where we are giveactor fieldF, and where our surface is
defined by a functiog(x,y,z) = const, (and some specified boundaries), when we do not rzeitg$ave a
convenient parametrization. As long as the surface is singlued in two coordinates, e.g. for a givery
there is a unique on the surface, we can use those two coordinatexgy@s the two parameters as follows:

Calculatdlg (which is the vector normal to the surface).
Find the unit normal vector in that direction= COg/|dg|.

Calculate co8 = n -k, where@ is the angle betweemand the+z-direction.

P 0 NP

Write dS = ndS = ndxdy/ cos, using the result from the previous subsection. (For a gédcaé

illustration, consider a ’light bulb’ at = +. A small patch on our surface with ard&would cast

a 'shadow’ of areal Scosf on thexy plane; reversing this, the required a&on the surface which
casts a shadow of areix dywill be dS= dxdy/ cos8).

Combining the above expressions foand co® gets us & = (0g)dxdy/(Cg-Kk) .

5. Finally, use this to fornf.dS, and do the double integration with respecktandy.

Thus, we can usg, y) as our two parameters, provided ébg 0 over our range of, y, and also provided
that we can expreds(r) on the surface in terms ofandy. Here we may need to solve fain terms ofx,y
on our given surface; or if we are lucky, things may simplifytkat at giverx, y andg(x,y,z) we can evaluate
F.dSwithout actually needing to solve far

Note that Thomas gives an even more general version of thesevhe considers a plane with normal
p and an areaAlin the plane (in place ok and ddy): because he is working witfdS he usegcos8|

and writes ¥|cosf| as|Og|/|0g.p|. While one is unlikely to need to use a gengrathat version has the
advantage of covering the three capesi, p =j andp =k in one formula.

/F-ndS
s

50

Exercise 4.2.1f F = xi +Yj, evaluate



whereSis the rectangular box formed by the six planes

x=0,a, y=0b, z=0,c.
O

Exercise 4.3.1f F = 3y?i —j + x&, evaluate the integrgl, F.dS, where.” is the surface=1, 0<x<1,
0 <y < x(take the normal pointing in the positizalirection).
[Answer: 1/3] O

L/FﬂdS
S

over the hemispherical surfaSgiven byz > 0, X2+ y? + z° = a2, taking the normal outward from the origin.
[Answer: 1ma?] O

Exercise 4.4.1f F=i+] +k, evaluate

To link up with Thomas, his initiaJ f|dS| is just | F.dSfor a vector field such thdt = fn on the surface.

4.3 Volume Integrals

In Cartesian coordinates, consider a small cuboid with @meer at(x,y,z) and sidegdx dy,dz). This has
the eight corner§xy,z), (x+dxy,2), ..., (x+dx y+dy,z+dz) , and the infinitesimal volume of the cuboid
is obviously & = dxdydz. Since in this course we will not be considering curved thdearensional objects
in four-dimensional space, we do not have to think about toviad version ofdV.

However, the fact thadV is avolumeelement is an important way to look at it. If we re-label ouacp
using new coordinate@l, v, w) , then taking small displacemendsi, dv,dw gives us small displacements
(dr/du)duy, (dr/dv)dy, (dr/dw)dw in ordinaryx,y,z space. These three vectors will form a small paral-
lelepiped, and the volume of that parallelepipBd is given by a scalar triple product of the three vectors
above (see section 1.7); that will give the Jacobian detaniifor change of variables in a triple integral,

d(x,y,2)

9(u,v,w)

as in section 1.3; so this explains why the Jacobian formolksv

dv = dudvdw

Usually the integrand of a volume integral is a scalar. H@vewe could integrate vectors i, though
this is not so often used. Given a vector fi€le= F1i + F»j + F3k, one can define

[ Fav = (valdV)i+(/vF2dv>j+</vF3W)k

For exampleF might be the momentum vector field in a fluid, (in that case waldibaveF = pv where
p is the density an#t is the velocity); the volume integral above would then edhaltotal net momentum of
that volume of fluid.

The most useful integrals we will deal with from here onwaade the line integral, F - dr, the flux
across a surfacd,, F - dS, and the integral of a scalar over a volunfg f dV .

4.4 The Divergence Theorem

(See Thomas 16.8)
The Divergence Theorem states (following Thomas'’s worlihgt “under suitable conditions”:
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Theorem 4.1 The flux of a vector fiel# across a closed oriented surfacé in the direction of the surface’s
outward unit normal vector field equals the integral of] - F over the regior enclosed by the surface

/D-Fd\/:/ F-ndSE/ F.dS (4.8)
9 7 57

If asked to state this theorem, yowst define the terms used, and state the conditions on the sififace
“closed, oriented”) and on the direction of the normal (cah).

We have not spelt out here in detail the ‘suitable conditioeguired of F and the surface. These, and a
proof, are discussed in section 4.9, but will not be examaab

Here the word ‘Oriented’ means we assign an outward diradto the normal to S in a consistent and
continuous way. An S for which this is possible is calleientable the Mdbius strip (see Thomas Fig.
16.46) is an example of a non-orientable surface.

Note that it is not required tha¥’ has a single connected piece. For instance, it could havpawse, one
inside the other, and them would be the volume in between.

The Divergence theorem appears in a number of importantigdilysituations such as Maxwell’s equa-
tions in electromagnetism, and various cases in fluid dyosmFrom a purely mathematical viewpoint,
another use is that to calculate either of the integrals iétcan use the other one if it is easier to do.

In the next example we calculate both sides of the Divergg&hearem for a simple case, and verify they
really are equal.

Example 4.6.Supposef = xy. Find a vector field= such thatd-F = f. SupposeV/ is the closed
rectangular volume bounded by the plaes 0,a, y = 0,b, z= 0,c, and.¥ is the surface of the volume.

Evaluate directly
/fd\/ and /F.ndS
v 7

(wheren is an outward normal), and show that they are equal — as tlmycébe, according to the Divergence
Theorem.

The volume integral is straightforward.

c rb ra c rb c rb
///xydxdydz //[%xzy]gdydz:// 1a%y dydz
0 Jo Jo o Jo 0 Jo

C C
/o [2a%y?)8 dz= /O 1ab? dz= a?h?(Z§ = 1ab’c.

There are numerous ways to construct a vector fietaf the required form, e.g. by integratingwith
respect toc and making this th&component of a vectdt, so

F=(x%/2,0,0) .

Our closed surface” enclosingV is a cuboid with six faces, so we must evaluate on each of the six and
add the results. Since our cuboid is aligned withxhgz axes, on two of the faces,= +i, on twon = +£j
and on the last twa = +k.

Becausd- Ui is always parallel to the-direction,F.n = 0 on the four faces where= +j, +k, so those

give zero surface integral. The remaining faces are the thverex = 0 andx = a:
On thex = 0 face,F = 0 and soF.n = 0. This leaves only the face= a. On that facer.n = (a?y/2)i.i =
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a’y/2, and we have S= dydz Integrating this over that face with respectta gives

b req 1 1 1
_ L2 _ (=32 Ih2 ) e — T4212
/yF.n_/o /O 2aydzdy <2a) <2b)c 4abc,

which agrees with the volume integral @f F above.

Example 4.7. A more typical example of the use of the Divergence Theoretihddollowing. Find the
integral [gA.dSfor A = (x, z, 0) and the surfac8 of a sphere of radiua.

Using the divergence theorem, the surface integral is eigutile volume integral,, O - AdV over the
volumeV interior to the sphere. Bull- A = 1, so the volume integral if1 av over the sphere, which is the
volume of the sphere 41ma/3.

Doing the surface integrgkA - dSdirectly is possible, but much more long-winded.

Example 4.8. Another good example is that from Example 4.5, where we etatlia rather fiddly
surface integral over 1/8th of a sphere. In that case, we gigen F = Zk; sod- F = 1; and the Divergence
theorem tells us that a volume integrallofF is equal to the surface integral Bf dS over thewholesurface
bounding the volume. We may choose our volume as the intefitire 1/8 sphere, bounded by three planes
x=0,y=0,z=0 and the 1/8 sphere +y? + 72 = a? with x,y,z > 0, then the volume integral af - F is
just(1/8) (Volume of full sphere)= mma%/6.

The surface integral is the sum of four parts: one part overli#8 surface of the sphere which we did
before, plus three surface integrals over flat quartetesrin each of thexy, xzandyz planes: those have
outwardunit normal vectors-k, —j, —i respectively since our volume is on the positive side of gdahe.
But F = Zk, so for the second and third of those planes the dot prddwi& is zero; and for the first plane,
we are az= 0 soF = 0. Therefore, all three of the flat quarter-circles give udase integrals of O ; so the
surface integral oF.dS over the 1/8 sphere is equal to the volume integradlloF, = rra®/6, QED.

Exercise 4.5. State the Divergence Theorem. Evaluate both sides of ther@gnce Theorem for the
vector fieldF = xy?zk over a volume@/ which is the interior of the unit cube, i.e. the cube whos¢ives are
at(0,0,0), (1,0,0), (0,1,0), (0,0,1),(0,1,1), (1,0,1), (1,1,0) and(1, 1, 1). O

The Divergence Theorem equates two scalar values. Howewrercan derive from it vector identities.
For example, we can obtain what is called the vector form etkieorem:

/u dS:/DUdV : 4.9)
whereU is a scalar field, and both sides of the above equation arergect

This is proved as follows: given the scalar fiéld we choose any constant vectoand define a new
vector fieldF = U a; next we apply the usual divergence theorenktand the product rule Eq. 3.6 gives us
0-(Ua)=0+a-(0OU), so

/aU-dS:/a-(DU)d\/

Sincea is a constant vector we can take it outside the integral sigmg finally choosing the casas= |, j
andk in turn, we prove Eq. 4.9.

53



4.5 Green’s Theorem (in the plane)

(See Thomas 16.4: we take the statement he gives as Theonmewatded. Note that the right side is a
component of a curl.)

Theorem 4.2 (Green’s Theorem:) I¥ is a simple closed curve in the x-y plane, traversed couluekavise,
and M and N are suitably differentiable functions of x anchgnt

/(de+Ndy // (i—':—a—M) dxdy,

where the area integral is over the regiofi enclosed by the curvé.

Note that if asked to state the theorem you must state theenat®” (“simple closed”) and the direction
in which it is travelled.

Proof: The proof is an application of the Divergence Theorem, siggpa volume of height 1 in the
zdirection aboveZz. (Or, if one proves Stokes'’s theorem first, of that theorefakeF = (N, —M,0): then

///(ﬁN aM)ddde
- [](5- 5o

on integrating ovez from 0 to 1. On the top and bottom of the volum&,id in the+k direction soF.dS= 0.
On the rest of the surface we have

/F.dS: //NdS(—MdS,

where & is the component of§lalong thex-axis. Using d = (dx, dy, 0) along%” and d; = (0, 0, dz) in
thez-direction, &5 = dr¢ x dr; gives 5 = dydz and &5, = —dxdz, so

/F.dS //Ndydz+//M dxdz
S S

/Ndy+/M dx.

C C

where the second line follows because thetegral runs from 0 to 1 and the integrand is independegt of
now we have proved the two sides of the theorem are equal.

/(D-F)dv

(Thomas’s Theorem 3 is the same withreplaced byM andM replaced by—N. This version makes
the right side look like a two-dimensional divergence. Stimes you may see these called Green’s theorem
(first form) and Green’s Theorem (second form) etc. )

Example 4.9. Use Green’s theorem to evaluate

/ (xydy —y* dx)

around the unit square: straight path segments from thenatag(1,0) to (1,1) to (0,1) and back to the
origin.
In this caseM = —y? andN = xy; hence

ON oM

X o'?y yray=3
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Thus the required integral is

/01/013ydydx: /01(3/2) dx = 3/2.

45.1 Area within a curve

From Green’s Theorem, we can get a surprising expressichéoarea inside a closed curv@ bounding a
regionSin a plane is

nA:%frxdr,
c

wheren is the unit normal to the plane. We can assume without loseoérglity that the plane of the curve
is thex, y plane. Them =k andr x dr Ok, so we only need thecomponent of the integral which is

%j{(xdy—ydx).
[
By Green’s theorem in the plane this equals

}/dedy:/ldxdy: Area insideC.
2Js s

This can be useful for example if we are given a curve in patamrm (x,y) = (f(t),g(t)) which
contains a closed loop, and we want the area of the loop: s$ireceurve has a closed loop, then there are
two values ofty,t, where the curve returns to the same point, and (as long asutiie does not cross itself
betweerty,ty), we can evaluate the enclosed area within that loop usimghlove formula as

1/t @/ dx

A = 2 ) X(t)dt_y(t)a dt (4.10)

A neat example of this is the case of the ellipse; acost, y= bsint ; this clearly is a closed loop for
t1 =0, t, = 2, and we obtain the area as

2n
A= %/ (abcogt + absir?t) dt = mab
0

4.6 Stokes’s Theorem

(See Thomas 16.7)

The other major theorem of similar character to the Diveggefheorem is Stokes’s theorem which follows.
(Because both are versions of thalimensional Stokes’s theorem, we can prove Stokes'’s émedrom
Green’s and thence from the Divergence Theorem, which wa degtion 4.9. It can also be proved directly.)
We reword Thomas’s version.

Theorem 4.3 [Stokes’s theorem]: IF is a (suitably differentiable) vector field, ard is a closed path
bounding an oriented surfac#’, then

F.dr:/ (DxF).ndSE/ (0% F).dS, (4.11)
¢ 5 7

where% is travelled counterclockwise with respect to the unit nalrmof .~ (i.e. counterclockwise as seen
from the positiven side of.&).
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Again note that if asked to state the theorem, you must dtatét is closed, that it bounds’, and that the
directions of & and d are related as given above.

Itis easy to show that Green’s theorem is a planar versiohisfrésult.

Note that the result is the same for any surfa€¢evhose boundary i%’, so any two surfaces, . with
the same bounding cuni give the same surface integral. ( We will not give a formalgiraf this, but in a
nutshell it is because
O-(0x F)=0 from Eq. 3.12, then applying the Divergence theorem to tilame enclosed between the
two surfaces). This can simplify integration a lot if the Inoling curve lies in a plane, since we can replace a
surface integral over a curved surface with that over thesfigfiace with the same boundary.

To emphasize the need for differentiability conditions)sider

—Yi+X]
F= .
X2 4 y?

We can easily verify thafl x F = 0 (except on the axis where it diverges). But we can also show that
§ F.dr # 0 if we go around the axis: for example going round a circle of radiasising a parametrization
(acosf, asinf)we would have

/F-dr = fa‘z(—asinei +acosfj).(—asinfi +acosj) do :j{ do = 2m.

This occurs because our closed curve has looped arourr-thes where there is infinite curl; if you do the
Complex Variables module in Semester B, this is very simiaa contour integral around a pole.

Example 4.10. Use the surface integral in Stokes’s theorem to calculaeitculation of the field~
F=x% + 2% + 2k

around the curvé’, where? is the ellipse 4° +y? = 4 in thex-y plane, taken counterclockwise when viewed
fromz> 0.

In Stokes’s Theorem, we can choaagy surface that spans the cur¢é The easiest one in this case is
just the planar surface= 0 contained inside the ellipse (so we can use Green’s theioréat). Thusn will
be purely in the-direction:n = k, and so we only need to calculate theomponent of] x F:
_O0R OF 9(x) ox )

OBk =~y = ox oy 2

Integrating this over the elliptical area is easy: the ands/@ust 2 times the area of the ellipse. The area of
an ellipse isrrab, wherea is one semi-major axis length (in this case 1) &nd the other semi-major axis
length (in this case 2). Hence the answeriis 4

As in the case of the Divergence Theorem, we can give a vemtor 6f Stokes’s Theorem. Given a scalar
field U, we letF = Uafor some constant vectar Then

[5Ua.dr = /y(Dx(U ))-dS

/,((DU)xa)-ds
4

a./dex (V).

The first line is Stokes’ theorem, the second follows fromrille Eq 3.8 for curl of a product, and the third
from the rules for the scalar triple product. Now we can take ¢onstanga outside the integral sign; then
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choosinga =i, j andk in turn, we derive the vector equation

Udr :/ dSx (OU)
,(])

(74

Exercise 4.6. State Stokes’s theorem.
Evaluate both sides of the theorem for the vector fleld yi + Z + yk and the surfac& of the hemisphere
X2 +y2+ 272 =4 in z> 0, with normal in the positive-direction. [You may find the expressions relating
Cartesian and spherical polar coordinates useful.] O

Exercise 4.7. Use the surface integral in Stokes’s theorem to calculaeiticulation of the field~
F=2yi+3x -2k

around the curv& where? is the circlex? 4+ y? = 9 in thex-y plane, counterclockwise when viewed from
z> 0. [Answer 91.] O

We can use the Divergence and Stokes’s theorems to derigeratbults including, later on, the forms of
divergence and curl in curvilinear coordinates in Chaptérttose formulas could be found, more laboriously,
by direct calculation from the Cartesian definitions by gpmd the chain rule. Another important application
will be given next.

4.7 Conservative Fields and Scalar Potentials

(See Thomas 16.3)

Conservative vector fields play an important role in manyliappons. A vector fieldF is said to be a
conservative fieldiff the value of the line integrafF(?F -dr between endpoints P and Q depends only on
the endpoints P and Q, amibt on the path taken between them. An example of a vector fieldtwisi
not conservative is the one in Example 4.2 — we explicitlynfddifferent answers for the same endpoints,
depending on the path taken.

For a conservative vector fielg, the integralf F.dr around anyclosedpath must be zero (because the
value will be given by the trivial path which always staysfa given point). So iF is a force, for example,
the net work in going round a path back to where one startedris. 2nergy is conserved, hence the name
conservative (nothing to do with politics).

We first state and prove the important result that (subjedifterentiability conditions) a vector field is

conservative iff it is irrotational (or curl-free). In itdaement, ‘contractible’ means we can continuously
deform the region so it squashes to a point. (A torus, for ganis not contractible.)

Theorem 4.4 In a contractible region,

OxF=0 <= dascalarfieldp(r) such thaF = Og. (4.12)

Note: Such ag is called a(scalar) potentialfor F. The theorem says a vector field is conservative iff it has
a scalar potential.

Proof:

(«<): This was done at the end of Chapter 3, where we proved theitgénx (O¢) = O for any g,
subject to the partial derivatives being well-behaved. STifiee = O thenO x F = 0.
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(=): Givenl x F = 0, we proceed by defining the scalar fieir ) by

MQ:AFW, (4.13)

wherea is an arbitrary but fixed point; note the line integral hasaacanswer, s@is a scalar field. We will
soon show thatlp = F as required. First though, since we have not defined the pdib taken fronator,
we must show that the integral is independent of the pattdle that thep defined above is well-defined.

Suppose tha¥) and%, are two different curves frormtor. We need to show that

F.dr = F.dr.

@ “

To prove this, lets” be the closed curve formed by followirgj from ato r and then takings, backwards
to get fromr back toa. Let.” be a surface whose boundaryds Then:

F.dr — Fdr = /F.dr
2 & ¢

- /(DdeS
5
=0
The first line is because following- backwards gives us a minus sign in the line integral; the rse:tine
is Stokes’ theorem for the closed cur¢é Hence, the value o only depends om, but not on the path

taken fromator, and sop(r) is well-defined. [Note: Thomas gives a direct proof of the patthependence
property forF = 00V.]

Next we need to showlg = F as we wanted: we consider a small chadgeand we get a small change
00,
r+or
6(pz(p(r+5r)—(p(r):/ F-dr = F(r)-or,
r
and this is true for any (infinitesimal) vectdr. But by definition ofJg in Chapter 19 = (Og) - or. Hence
Og-or=F-or.

But this is true forall or, sod@ = F, as we wanted to show. Q.E.D.

Once we have done this, we easily get the line intedfal dr between any two points, say to ra:
choose a path from; back toa, and then froma to r,; since taking a line integral backwards gives us a
minus sign in the result (as for swapping upper/lower lirmta 1D integral), we get

[ Fdr=otr2) - gty

Also note that we can add a constangterithout changindl; adding a constant is essentially equivalent
to changing our choice of fixed poiatin eq. 4.13, sincep(a) = 0 from the original definition.

In the case wherE is a force, it is usual to defing(r) = — /1 F.dr with an extra (arbitrary) minus sign
compared to (4.13); then we get= —[¢, and@ can then be identified with the potential energy, which
decreases when a body moves in the direction of the force fiiocand increases in the opposite direction
“up”. Note again that the value @f is only fixed up to an additive constant, which depends on ttivéce of
reference poina.

Warning: There is a possible snag with notation here: it is very comfooinistorical reasons to use
the symbolg (the Greek letter “phi”) for a scalar potential, or sometgne by analogy with Voltage in
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electrostatics. Thap is obviouslynot related to the coordinate angewhich will appear later in spherical
polar coordinates; or alsé can possibly get confused with volume. Sometimes the sysrb@uppercase
phi) or ¢ (curly phi) are used for the potential, but this still looksitg similar.

Unfortunately, this somewhat confusing notation is hgauged in many textbooks and old exam ques-
tions, so it can’t be escaped and you just have to be aware lof ihost cases it is reasonably obvious from
the context which is which.

Example 4.11. Show thatr = (z, z x+Y) satisfied] x F = 0, and find a scalar fielg such that = O¢.

[Note that in answering questions of this sort, where yotettaviind ¢, you might as well do that first since
F = O¢ immediately implied] x F =0.]

A simple way to do these problems is by direct evaluation eflite integral (4.13), taking as the curge
as the straight line from the origin (so we are takénig be the origin) to the desired poinX, Y, Z) say. The
lineisr=t(X,Y,Z),0<t<1,sod =(X,Y, Z)dt, while for this example, on that life= (Zt, Zt, Xt+Yt).
Thus the integral is

1 1
/F.dr:/ [XZt+YZt+(Xt+Yt)Z]dt:(2XZ+2YZ)/ tdt = (2XZ+ 2Y D)t =XZ+YZ
€ 0 0

Hence for a general point we hage= xz+yz We can also add any constantg@qsince it will disappear
in Og): this expresses the freedom of choice of thim (4.13). [In physical uses of scalar potentials, the
reference point is often taken to be at infinity.]

An alternative method is as follows: it is included to empbasome useful points about integrating sets
of partial differential equations (i.e. differential edicams with partial derivatives).

We want 9o 30 3
_ (99 99 o9
(27 Z7X+y)_ (0X7 ﬁya dz) (414)
Equating the first components and integrating with respexgives
Z:Z—()’::z:>¢:x2+f(y,z) (4.15)

where f is an (as yet) arbitrary function of andz Note thatf is a ‘constant of integration’ as far as
differentiation with respect ta is concerned: when integrating partial derivatives we haveplace simple
constants by functions of those variables not yet takendntmunt. The second components give

_do _ of
z= ay from (4.14)= ay from (4.15)

Hence Py
ay ~ 27 f(y,2 =yz+9(2) .
No x appears irg since we already know thdtdoes not depend on So, substituting this in (4.15),
@ =xz+Yyz+9(2) (4.16)

(g arbitrary as yet). Finally, the third components similaglye

¢ _
e from (4.14)= x+y+ & from (4.16)

Henceg has a zero derivative, i.e. is constant and theregggaven by

d
X+y= J

@ = Xz+ yz+ const
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(We could drop the constant here as withougitvould still fulfil the conditions of the problem.) Hence
OxF=0.

Example 4.12. The gravitational force on a ball of massis F = (0,0,—mg). If the gravitational
acceleratiorg can be assumed to be constant (which is an excellent appatigimfor everyday life:g ~
9.8ms?) thenF = —¢p where@ = mgzfconst.,z being measured, say, from the surface of the Earth. (We
can measure from wherever we wish, since a change of origin just chanigestbitrary constant ip). In
this casap is thegravitational potential energy.

Exercise 4.8. Show thatr = (yz zx xy) is conservative and find a suitable potengiaduch that = Oe.
[Answer: ¢ = xyz+-const.] O

Exercise 4.9. For each of the following field&, evaluatd x F and either find the general solutign
satisfyingF = O everywhere, or show that no sugrexists:
(@) F = X% +y? + 2z
(b) F = Z2i + %3 4+ y°k
(c) F = 372 + 3y?j + 6x&
(d) F=yZ —xyk.

a

The rest of this chapter will not be lectured and is not examimble. It is included for reference, for
completeness, and to give intellectual respectability byrpving the main theorems.

4.8 \Vector Potentials

(Note: this is not on the syllabus. Itis included for comptedss, for the sake of those who take later courses
where it is used.)

We have seen that, i x F = 0, then there exists a scalar potentpduch that = O¢. There is a similar
resultif 0- F = 0 instead:
Theorem 4.5 In a contractible domain,
O-F=0 = 3JA(r) such thaF =0 x A.
In the (<) direction, this is the identity discussed before. The piiadhe other direction consists of
writing down suitable integrals, in a way analogous to theopof (4.12), and is messy so we omit it.

The functionA is called avector potential. Note that one can always add an arbitrary function of the
form D@ to A and get another perfectly good vector potentialfpbecausél] x (dg) is zero for anyp, and
S0
Ox(A+0p)=0xA+0Ox (0¢p)=F+0=F.
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In physical contexts this is referred to as a gauge transitian, and provides the basic example whose
generalization gives all the modern gauge field theorieshykjes, the basis of our understanding of all
microsopic physical processes.

Example 4.13. Any magnetic fieldB satisfied]-B = 0. So, for example, consider a constant magnetic
field B = (0,0,Bp) in thez—direction. A suitable vector potentil in this case is

( 1Boy, lBoX O)

<0Az OAy 0A A, OA ﬁAX)

since

OxA =

dy 0z’ dz Ix’ Ix ady

1 1
<0—0,0—0,§Bo—(—550))
B

4.9 Derivations of the main theorems

(See Thomas 16.7 and 16.8)
[This section is not examinable]

We now return to the proofs of the Divergence and Stokes’ofiéras.

Consider first the “proof” of the Divergence Theorem usingtaagular boxes. Take a bdx;, xp] x
[Y1, ¥2] X [21, Zo]. Then for a vectoA = Agi + Ayj + Ask,

om (9A2 | 9
[ (252
//A1 dydz+//A2 dxdz+//A3 20 dly
/ Aqdydz— / / Aqdydz+ / / Agdxdz— / / Agdxdz (4.17)
front back right end left end

+ / / Agdxcly — / / Agdxdy.
top bottom

On the front of the box (i.e. the surfage= xp) dS = idydz while on the backX = x;) dS= —idydz so the first
two terms in (4.17) arg A.dSfor the front and back. Similarly for the remaining terms.

/(D-A)dv

One can complete a “proof” by decomposing a volume into susted and adding the results, noting that
the surface integrals on a face common to two boxes will dasroanother. This overlooks the difficulty of
proving that the surface integral for all the boxes gives ez limit for the smooth surface (for the volume
integral this just follows from the definition of such intedg).

Instead we can work towards a correct proof by first noting tha terms match up in the sense that

/ / /j %dxdydz: / /yAg(dS)z (4.18)

for the box. (What we thus really do is prove the theoremRct Ask and then add together three such
results.)
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We now have to cope with some technical points
1. We must be able to integrate the derivativeg.aince. A sufficient condition is that all first derivatives of
A are piecewise continuous. If the derivatives have disoaittes we have to do the proof for each smooth
piece separately and then add the results.
2. That first point implieg\ itself must be piecewise continuous.
3. We require the surface to be bounded (so we have a finit¢ @neeclosed (so we have a finite volume).
4. We must to be able to integrafeA.dS. So we want to be able to assign coordinates on pieces of the
surface S, sayu, v), in such a way thate, x e,)dudv can be defined and calculated, i.e. we want the map
R? - R3: (u,v) — (x(u, V), y(u, V), Z(u, v)) to be (piecewise) sufficiently differentiable.

These assumptions ensure we can break D up into convex pi€mwex’ means that any line cuts the
surface at most twice. So now we have the form

Theorem 4.6 If .7 is a bounded closed piecewise smooth orientable surfadesing a volume?, and ifF
is a vector field all of whose first derivatives are continuaghen

/D-FdV:/ F.ndS:/ F.ds,
9 54 54

wheren is the normal outward-pointing frory.

Figure 4.3: Convex surface used in the proof of the Divergerteeorem

Proof: [This proof is more-or-less identical, with slight chasge notation, with the one given by
Thomas.] We breal” into convex pieces and first prove the result for a single eamiece (which we
call 21). In fact we need only prove (4.18). Consider lines paratiethe z-axis. Those which mee¥;
either meet it twice or touch it on a closed curve. Divide thgace into.”™ and.#~, the upper and lower
halves (i.e.~ is where the lines parallel to theaxis first meet?: see Figure 4.3). Then, just using the
fundamental theorem of calculus,

/1] 1‘%3dxdydz= [ [, Ay zaay— [ [ Aoxyzdxay
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On.7*, (Agk).dS = Ag|dS| cosy = Agdxdy and similarly on~. Hence we have shown that

/ / /j 1%dxdydz_ / /y(Agk).dS

and adding similar results fok; and A, we get the Divergence Theorem fér,. When we re-combine
the convex pieces, the surfaces where they join appear twittee surface integrals, once with each of the
two possible signs for the normal, so these parts cancel nwother and only the integral over the bounding
surface remains. Q.E.D.

We showed above that the Divergence Theorem implies Grdsgtsem. We only have Stokes’s theorem
left to prove. The conditions are arrived at by similar calesations to those for the Divergence Theorem.

Theorem 4.7 For any piecewise smooth surfacé bounded by a piecewise smooth cut&en which(d x F

is piecewise continuous,
/ 0 x F.dszf F.dr,
5% 3

where the integral roun& is taken in the direction which is counter-clockwise as deem the side of
pointed to bydS.

Proof: The conditions imply that the surface can be decomposedkitep which project to regions in
one of the planes of Cartesian coordinates; without losgpnécglity say the¢x, y) plane. We prove the result
for one such region. Suppose we have coordinétes) on this region. We also consider only the terms
involving P whereF = (P, Q, R) (i.e. we prove the result fdf = Pi first).

X dx
0 X ,
//[ ( < )> u <P<a—v)>}dudv by Green’s theorem
oPodx JPox
B //(EW‘W%)"'“"V

// 0P 0x 0PQ+EQ ox Ed_erdeeranz X dudy
dxﬁu dyou 0dzdu) ov oxov odyov 0dzov au

using the Chain Rule
B 0P [dyodx Jdyodx 0P (0z0dx 0z0dx
= //d_y(ﬁﬂ_ﬂﬁ>dum+//5<ﬁﬂ_ﬂﬁ>duw

and taking the cross product of

_[(Ox. dy. 0z
dry = <%I+—J +—k> du,

easily shows that the double integrals give

[ [ (-5ws:+Sesy)

which is the part ofd x F.dS involving P. To complete the proof we add the parts wighandR and add
together the results from the pieces into which a gengtdlas to be split. Q.E.D.
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Chapter 5

Orthogonal Curvilinear Coordinates

Last update: 22 Nov 2010

Syllabus section:
4. Orthogonal curvilinear coordinates; length of line element; grad, div and curl in curvilinear coordinates;
spherical and cylindrical polar coordinates as examples.

So far we have only used Cartesiaty, z coordinates. Sometimes, because of the geometry of a given
problem, it is easier to work in some other coordinate systelere we show how to do this, restricting the
generality only by an orthogonality condition.

5.1 Plane Polar Coordinates

In Calculus Il and Chapter 2, we met the simple curvilineasrdinates in two dimensions, plane polars,
defined by
X=1rco0s0, y=rsinf.

We can easily invert these relations to get

r=xX2+y2, 0 = arctarty/x).

The Chain Rule enables us to relate partial derivatives mepect toc andy to those with respect toand6
and vice versa, e.g.
of ofox dfay _xof yof
0r_dx0r+0yar _rax+ray'
In Calculus Il, the rule for changing coordinates in intdgra also given. The general rule is that if we
change coordinates fromy to u,v wherex = x(u, v), y = y(u, v), then a ady in an area integral is replaced
by the Jacobian determinant

(5.1)

9% ox
ou dv dudv .
9y 9y
du ov

If we definer = (x(u,v),y(u,v),0), differentiate w.r.t.u,v and take the cross-product, we will see that the
above is equal to

ﬂ X ﬁ dudv ,
Ju

as= |5 x5
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as we derived in section 4.2.

For plane polar coordinates, replacings with r,8 and calcuating the determinant above giv&s=d
r drd@; this can also be shown geometrically by considering aniteimal quadrilateral with corners at
(r,0),...,(r+dr,8+d6) and working out the area from a sketch.

Example 5.1. The Gaussian integral (related to the Gaussian distributictatistics)

Consider the integral
0 00 2
/ / e (V) dxdy = ( [e.e* dx) .

Transforming to polar coordinates gives

o0 2 2n 1 2000 12
/ re"dr [ do=[-ze " |5[0l5 ="
0 0
and hence (according to Dr. Saha “the most beautiful of &digrals”)

/ e dx = VL

—00

For later use, we now construct the unit vectors in the dimastin whichr and 8 increase at a point,
which we will denoteg; andeg. These are tangent to the coordinate lines, wherecadinate line means a
curve on which only one of the coordinates is varying, andatfier coordinates are fixed. Coordinate lines
are generalizations of lines parallel to the, zaxes in Cartesians, but now they won'’t be straight lines¢hen
the “curvilinear” in the chapter title).

We already know how to find the tangent vectors to coordinats| by taking partial derivatives of
with respect to each af ; then all we have to do is divide those by their lengths to gétwectors. Thus in
plane polars we have

r =rcosfi+rsinfj

so a small changdr gives us a change

or S or or S
dl’r:Eer(COSQI—I—SInej)dI’, ‘W‘_l = er_ﬁ_cosewsmej
while a small changd® gives us
or oo . or o .
dre:%dez(—rsmewrcosej)de, |%|:r = eg=—sinfi+coshj.

So a general small displacement becomes
Or=g0dr+regdb

We will see the value of this later on; we are next going to amrsthree-dimensional versions of polar
coordinates: there are two common versions, firstly cylcalmpolars and then spherical polars.
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5.2 Cylindrical Polar Coordinates

For cylindrical polars, we turn the plane polars in thg plane into three-dimensional coordinates by simply
usingz as the third coordinate (see Fig. 5.1). To avoid confusidh wiher coordinate systems, we shall for
clarity 1 rename asp and@ asg@, but beware that in other courses, books, and applicatibthese ideas,
and@ will still be used. Thus we have

X=pcosp, y=psing, z=z,
or
r = pcosyi+ psingj +zk |

and quantities in any plare=constant will be as in plane polars. The figure 5.1 shows doatd lines for
each ofp, ¢ andz here the coordinate line fg is a line of varyingp and constan{,z, and likewise for
the other two. Note that the coordinate lines figiz are straight lines, while the line is a circle around the
zaxis. Thomas’s Fig. 15.37 shows a nice diagram of surfaceshoch one of the coordinates is constant:
the constanp surface is a cylinder whose axis is theaxis, while surfaces of constagtor constant are
planes.

A
C 0

.
0 |ine<
L

zline

y<

\
'z
\
\
\
\ li
- Ine
X S0 N P

Figure 5.1: Cylindrical polar coordinates relative to @aran, and with sample- and¢-curves shown.

The fact that constant gives a cylinder gives the name cylindrical polars: theserdimates are natural
ones to use whenever there is a problem involving cylindlgemmetry or symmetry (for example, doing a
surface integration over a cylinder, or in physics caldo@f magnetic field around a straight wire).

To get partial derivatives in curvilinear coordinates weaiaguse the chain rule (5.1), but now with three
terms on the right. Taking the plane polar results, changargble names and appendieg= k, the unit
vectors along the coordinate lines are

€ = COSQi +singj , e,= —sin@i+cospj, e =Kk

respectively. We can write this in matrix form as

€ cosp sing O i
€ | =| —sing cosp O i . (5.2)
& 0 0 1 k

lUnfortunately, for the same reasons of clarity, Thomas &xithe alternative solution of renaming two of the sphenmahr coor-
dinates. To avoid confusion with past years’ exam paperseé kapt to the choice used there, which is also the one usedshmoks.
Thomas choose, ¢, 0) for the usualr, 8, ¢). The swap o andg is particularly likely to be confusing.
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It is easy to see from the above that the dot-product of anyetsvgives 1 (if they are the same) or O (for
any two different ones), like the rules falj,k. This implies that the thre€'s are anorthogonal triple of
unit vectors, and also implies geometrically that the cimssiuct of any two differerg’s will be =+ the third
one.

We can also express this property in matrix notation: tle83natrix above, call iR, is a rotation matrix,
i.e. one such thaR~! = RT, where theRT denotes transpose. This comes about because the dot-produc
of any twoe's is given by one element of the matiR", and thee's are an orthogonal triple if and only
if RRT =1, the identity matrix.2 Also note that if we want,j,k in terms of thee's, we can just multiply
Eq.5.2byR 1 =RT.

The lengths oBr /dp, dr /d¢@ anddr /dz are respectively 1p and 1; we can use these together with the
€'s to find infinitesimal area elements: e.g. taking a surfaceconstant (a cylinder), we can treat this as a
2-parameter surface witp, z as the parameters, so the vector area element for small ebdpgiz is given
by
or or
as = ED X ﬁ_Z d(de
= pepx & dpdz
= p e depdz;

this will be useful when doing surface integrals over a ajdin (As usual, there is a potentially ambiguous
choice of sign with vector areas, due to the sign-flip in cliaggrder of a cross product; take care with this,
e.g. when doing a problem check that your vector area matbleedesired direction).

When doing volume integrals, we may need the volume elembithis

dVv = p dpdedz
from the scalar triple product.

5.3 Spherical Polar Coordinates

These are coordinatés 6, @), wherer measures distance from the origifh,measures angle from some
chosen axis, called thgolar axis, and@ measures angle around that axis (see Fig 5.2.) To relate tinem
Cartesian coordinates we usually assume thatthes is the polar axis. Then, let P be our chosen point
at (r, 8, 9), and drop a perpendicular from P to theaxis meeting it at Q. The line OP is at and@ldo the
positive z-axis, so clearlpQ = z=rcosf and PQ =rsin6. Dropping another perpendicular from P to the
Xy plane, we get a point in they plane at distancesin@ from the origin; then inserting = r sin@ into the
cylindrical polars in Sec. 5.2 gives us:

X=rsin@cosp, y=rsingsing, z=rcoso.
or, as a position vector
r =rsin@cos@i+rsin@singj +rcosf k

Here thep is the same as that of cylindrical polars, which explains wieychose the same letter. The inverse
of these relations is

2 2
r=vX+y+2, 6= arctan(@) ;9= arctar‘(:—:) '

2Rotation matrices are “special” because they preserveHerand angles; e.g. if we take two vectars, write them as column
vectors, then their scalar product in matrix notatiorai®. The two vectors rotated by matrik areRa andRb. To conserve scalar
product, we must havgRa)" (Rb) = a" b, and using the transpose rule this becoaeR"Rb = a" b. For this to apply formny two a,b
we must hav&RTR = [, the identity matrix.
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Coordinate lines of, (i.e. lines of constan® and ¢), are straight radial lines from the origin; coordinate

rline

: gine C 107
6

y<

0 line

Figure 5.2: Spherical polar coordinates relative to Céatesand with sample-, 6— and¢-curves shown.

lines of 6 (constant and @) aremeridional semicircles, i.e. semicircles centred at the origin and jiteae
containing the polar axis; and coordinate linesgofconstantr and 8) are latitudinal circles, i.e. circles
centred at a point on the polar axis and in a plane perperatitait. Note however that while runs from
0 to = (like ther of plane polars ang of cylindrical polars) andp runs from 0 to 2t (like the 8 of plane
polars),6 only runsfrom 0 to 11, since for any point P the angle between OP and the z-axistwesnéed
180 degrees # radians.

The coordinate lines o are strictly semi-circles, rather than circles. To makerealeiwe have to take
the coordinate lines d for two differentg, say@ and@ + 7. Thomas’s Fig. 15.42 shows a nice diagram
of surfaces on which one of the coordinates is constant.

You should beware of the fact that some authors, includingnds, use different notation, in particular
swapping the meanings éfandg in the definition of spherical polars. We shall consistentdg the above
notation for spherical polar coordinates, which is the noashmon one, throughout this course.

Note that these again generalize the plane polar coordinbte this time the polans 6 are in planes
containing thez (or polar) axis, rather than in planes perpendicular to ite pherical polar coordinates are
of course the natural ones to use when we have a sphericalegsoor part of a sphere.

Now we construct the vectors as before: taking partial derivatives above with respect to each of the
coordinates in turn, we get

dr/dr = sinBcosyi+ sin@singj + cosok,
dr/068 = rcosfcosgi+rcosfsingj —rsinfk
dr/de = —rsin@sin@i+rsinfcosyj.

The lengths of these, by simple applications offaps sin’ ¢ = 1, are respectively ¥, andr sin@. Dividing
these derivatives by their lengths gives us the unit vee{gey ande, tangent to the coordinate lines, which
we can write as

e sin@cosp sinfsing cosf i
eg | = cosBcosp cosBsing —sind j . (5.3)
€p —sing cosp 0 k

It is straightforward to show that again the dot-product oy &wo €'s is 1 (if they are the same) or O (if
different); therefore the cross-product of any tee is + the third one and the matrix above is again a
rotation matrix.
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Itis also worth noting thag, =r /r, as expected by symmetry singds a unit vector pointing away from
the origin at point.

For doing integrals later on, the volume element is givenhgydcalar triple product
dV = (dr/adr) x (dr /36).(dr /d¢) dr d8 dg = r?sinH dr dO dg
The infinitesimal area element on a sphere (i.e. a surfaceradtant r) is given by
dS= (dr/d6) x (dr /@) dOdp =r?sind e dodg

Similar results hold for surfaces of constaptand of constan®, but are not so common in practice; note
that the above area element on a sphere turns up in many eesuanpdl exam questions, and is well worth
memorising.

Example 5.2. “Earth polar coordinates”

To define spherical polars on the Earth, let the polar axithbeHarth’s rotation axis, with increasing
to the North, let the equator define tkgy plane, and let the prime meridian (the one through Greenwich
be @ = 0. Then any point on the Earth’s surface can be referred théyspherical polar anglé®, @). In
navigation people use latitude and logitude. Longitude éasured East or West from the prime meridian
and is in the rang€0, 180°) so to getp for a place with Westerly longitude we just subtract from-=2 360°.
Latitude is defined to be 0 at the equator (whe@as90° = 11/2 there). Given a latitude, we need to subtract
it from 90 if it is North and add it to 90if it is South.

For example Buenos Aires, which has latitude 38S, and longitude 522'W, will have Earth polar
coordinated) = 125, ¢ = 302 to the nearest degree.

5.4 Some applications of these polar coordinates

Using polar (or cylindrical) coordinates the area withinizle of radiusR, fORfOZ"r dedr, comes out imme-
diately asmR?.

Using spherical polar coordinates the volume of a spheradifisR is

R p,m p2m
/ / / r2sin6 dd6 dr
JO JO JO

which evaluates t@nR? (Remember that for a full sphere, the ranges of integratie< 8 < 11, 0 < ¢ <
21).

Example 5.3. Area of a cone:
Consider the conical surfadke= 6, cut in a sphere of radius The area is given by integrating
2n s
/ d(p/ Sindyr dr = 2 sinG;.
0 0

Heres s the slant height of the cone. The cone’s base Bayill be ssin8;. Hence we can express the
sloping area of a cone neatly ash.

Example 5.4. We now reconsider Example 4.5.
Find the flux of the fieldF = zk across the portion of the sphexé+ y? + 7% = a2 in the first octant with
normal taken in the direction away from the origin.
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Because of the geometry of the surface, it is easiest to wodpherical polar coordinatés 6, @), so the
sphere has = a. The unit normah to the sphere that points away from the origin is jgstthe outward
radial vector of unit length. Now

F.e = Zk -6 = zc0sO = r co< 6 .

using 5.3 to evaluatk.e; = cosf. An area element on the surface of a sphere of radisis
(rd@)(r sinfde) =r?sin8d6 de. For our given sphere= a, so

n/2 rm/2
/F-ndS = / / acos 6a’sin6dodyp
JS JO 0

n/2 rm/2
= a3/ / cos 0sin6dodyp
o Jo

. /2
_ T Leoge
2 3 0
T3
= =a°.
6
Note that the integrand didn’t depend @nso we just replaced thidp integral with a multiplication by the

range, herér/2—0). This is a common short-cut to note.

Example 5.5.Cutting an apple

In his book, Matthews poses a good problem for illustratimiggration using curved coordinates: “A
cylindrical apple corer of radiua cuts through a spherical apple of radlusHow much of the apple does it
remove?”

We can reformulate the problem slightly, without losing geality, by letting the radius of the apple equal
unity and introducing sifi; = a/b (i.e. we scale the problem Hy). In our restated problem the corer cuts
through the peelat 8 = 6; andf = %n— 6, in spherical polars, i.e. in cylindrical polars at

p =sinB;, z=cosb;,

and, of course, &= — cosb;.

We can now complete the solution of this problem in (at lefmt)y different ways: three of these are
relegated to an appendix, not given in lectutes.

The first way is to integrate overand therp

singy \/1-p2 singy 1
4n/ pdp dz:4n/ p(1—p?2dp = 4?n(l—cos”(pl).
Jo Jo Jo

5.5 General Orthogonal Curvilinear Coordinates

The two sets of polar coordinates above have a feature in @ymitine three sets of coordinate lines are
orthogonal to one another at all points, because their tangetors and corresponding unit vecteisare
orthogonal. (This is where trmrthogonal in the chapter title comes from).

3| give only the key steps. Some algebraic filling-in is neededeach version we can shorten the calculations by repattia ¢
integration with multiplication by 2 (since the integrand doesn’t depend@n, and also doing the integrals only fae> 0, and then
doubling using symmetry.
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General orthogonal coordinates are coordinates for whielse properties are true, i.e. the coordinate
lines are always mutually perpendiculara given point, though they are generally curved. In general,
coordinates need not be orthogonal. However, we shall beectorad only with orthogonal curvilinear co-
ordinates. Cylindrical polars and spherical polars aredhly non-Cartesian coordinate systems in which
you will be expected to perform explicit calculations inglziourse, apart from simple substitutions into the
general formulae.

Suppose€us, Uz, Uz) are a general set of coordinates, defined by some given fumtiiy, up, uz). As
before, we calculaté@r /du; which is the tangent vector towg line (varyingus, constanusy,uz). Next we
define the arc-length; and unit vectoe; as

or or
hi=|=— =—/h
1= 150 e (7u1/ 1
therefore
ﬂ:h
ou; 1€1

Itis easy to calculate that
W2 _ ox 2+ ay 2+ 9z \?
“\dug Jup dup)
Likewise differentiating by u,,us, we define two more unit vectoes, e, along the coordinate lines of
u» andus, and associated arc-length paramekerandhs. This is useful for several reasons: firstty,tells

us in which directiorr moves with a small change im, while hy du; is the distance moved alorgg, and
likewise for changedus, dus.

We define a coordinate system todmthogonal iff e;, & ande; are mutually orthogonal everywhere:

Coordinategus, Uy, uz) are orthogonat ;—url;—ljz = (;i—:z(;i—; = ;—Js(;i—tjl =0

For orthogonal coordinates, a general small chaldge, duy, dus) in the coordinates means a displacement
dr = hiduie + hoduse, + hzduses (5.4)

which corresponds to a distance
(h2dlu2 + h2du2 + h3du2) "2
Also, for orthogonal coordinates the dot and cross prodofcgy twoe's will obey the same rules we met

before: therefore the matrR relating(ey, e, €3) to (i, j, k) will be a rotation matrix (from above) and have
the property thaRT = R~1.

Cartesian coordinates are of course a special simple cas¢haigonal curvilinear coordinates, in which
all the coordinate lines are straight lines and alhpt=h, = hz = 1.

Sometimes it is convenient to replace the 1,2,3 with thedetf the coordinates, e.g. in cylindrical polar
coordinates, we wrote,, €y, €;. There we already founld, = 1 andh; = 1, buthy, = p, so a changeaq
corresponds to moving a distangdg along a circle around the-axis.

In spherical polar coordinatel; = 1 again, anchg = r. A change @ in @ corresponds to moving a
distancer sinfdg (because sinf is the radius of the particular latitudinal circle aroune th-axis), so
hy = rsind.

One reason that orthogonal coordinates are so useful isthay orthogonal coordinate syst€m, u, uz),
small displacements along andu, define small rectangles, while small displacements alangs,, us de-
fine small cuboids. In other wordl; hy du; du, is an area element normal ég on a surface of constang,
andhy hy hz du; dup dug is a volume element.
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5.6 Vector fields and vector algebra in curvilinear coordindes

Scalar fields can of course be expressed in (orthogonal)licwar coordinates: they are simply written as
functionsf (uz, up, us) or for brevity f (u;).

As you will know from Linear Algebra, vectors can be exprasssing any basis of the vector space
concerned. The same is true, at each point, of vector fielgstoow we have always chosef, k as our
basis vectors: however, when using curvilinear coordmate will normally use the orthogonal unit vectors
along the coordinate lines as our basis vectors, and write

F=Fie; + Foep + Faes.

For clarity, we can use the coordinate names instead of &2s8bscripts for the three components. Thus we
may write

F = Fx| + FyJ + sz

to express the same vector in Cartesian, cylindrical paidrspherical polar coordinates (of couege=i and

so on in Cartesians). Note that tekemevectorF will have different components depending on our choice
of basis vectors: suppose we are giverfamith definedry, F,, F, above, but we want to fing,,Fg, Fy, then
we need to use the matrix as in Eq. 5.3 to exprgs& in terms of thee's, multiply out and collect into one
term in eacle. (This effectively turns into a matrix multiplication).

In any orthogonal coordinate system, the scalar (dot) antbvécross) products work just as in Cartesian
coordinates:

W.V = W1V1 + WoVo + W3V3 (5.5)
and
& & 6
WXV=| W Wz W3 , (5.6)
Vi V2 V3

but note this only works if the vectors are defiretdhe same point, such as a dot produé&t-dr or F-dS
in a line or surface integral. Weannot use these for two position vectors at widely separate pdietsause
thee's vary with position.

Vector differentiation is more complicated, because thié wectors are no longer constant: when we
differentiated a vector in Cartesians
F=Fi+Fj+Fk
we just differentiated the componerits, F,, F3) because the unit vectors are constant; but in general coor-

dinates thee's depend on position, so we have to use the product rule dfedetitiate thee vectors as well
as the components.

Differentiation of these vectors with respect to a variatteer than position (like the derivatives in Sec-
tion 3.1) is straightforward. For example if positiordepends on time, and is given in cylindrical polars so
I = pep + 78, we just use the product rule to get the time derivative

P =pep+pep+2e,+28; .

(where the over-dots are shorthand for time derivativesa®mmon). Then sinog = cosgi + singj from
(5.2), _ _
€ = @(—singi 4 cosyj) = @e, .
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Similarly & = 0. Substituting into the previous result, we get
r=pep +p¢e¢+'zez
for a velocity in cylindrical polar coordinates.

When differentiating scalar or vector fields with respeqidsition, the key operations are always grad of a
scalar, and div and curl of a vector field (this is becauseghes the only combinations that behave “sensibly”
after rotations). In the next sections, we will show how ttrakate the grad, div and curl operators in general
orthogonal coordinates; then we apply those general faeta the most common cases of cylindrical polars
and spherical polars.

5.7 The Gradient Operator in curvilinear coordinates

To calculate the gradient of a scalar fi&ldu;, uy, uz) in orthogonal curvilinear coordinatés;, uy, uz), we
go back to the definition
v =0OV.dr . (%)

for the changelV caused by an infinitesimal position chardye

(Note: heredV is the infinitesimal change in scalar fieldresulting from a small changdr; it is not a
volume element. )

We definelV = (OV)1e1 + (OV)2e2 + (OV)3€3, and we want to find the three componefiiy/ ), etc.

From the definitions of the unit vectors previously, we have-de;hidu; + e;hdu; + eshzdus, so the
right-hand side of{) becomes

((AV)1e1+ (OV)2e2+ (OV)ze3) - (exhydu + exhzdus + eshsdus)
= (OV)1h1dug + (OV)2hedu; + (OV) 3hzdus

using the orthogonality of the's.

Now turning to the left-hand side of of), using Taylor's theorem (in 3 dimensions), and discarding
terms of second and higher derivatives, we get
ov ov ov

V= —-— — —
d duldul+ 0u2du2+ du3du3

These two expressions above must be equalfigrarbitrary changesid, du, and diz. Hence we must have

ov ov ov
V)ihi=—; (V)2h,=—; (OV)3hg=—
(OV)1hy U (OV)2hy FT (OV)shs FT
Dividing by theh’s and substituting back into the original definition, inlaygonal curvilinear coordinates
we have
10V 10V 10V

v = ——— e — . 5.7
hldulel+h2 0U2e2+h3 0U3e3 ( )

Clearly in Cartesian coordinates, we have= x, e; =i etc and all thredy’s are 1, so this simplifies to
the well-known formula from Chapter 1.

For a geometrical explanation, théh terms take care of the arc-length effects, i.e. howr faroves for
a small change in each coordinate. So the 1-compondnVakepresents the changd per smalldistance
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dsin the directione;; but, moving a distancés in directione; requires a chang@u; = ds/h; in coordinate
uy; therefore the 1h; terms appear in grad V above.

Example 5.6. What isOIV in spherical polar coordinates ? Evalual¢ whereV = r sinf cosg.

In spherical polarsjus, up,us) = (r, 8, @) andh; = 1, hy, =r, hg = rsin@. Putting those into 5.7 we have

g 1 Lo,
“ o T30 rsinf de *

For the giverV, dV /dr = sinB cosy, dV /968 = r cosf cosp anddV /d@ = —r sinBsing. Hence, using
the result above,
[V = sinB cosge; + cosf cospey — Singey.

(In this case we can observe that= x and[V =i, using the matrix from Eq. 5.3, so this example is a lot
easier in Cartesians; however, many problems involvincutér or spherical symmetry do get easier in polar
coordinates).

Exercise 5.1 What isCIV in cylindrical polar coordinate§, ¢,z) ? O

Exercise 5.2. Let (r, 0, @) be spherical polar coordinates. Evaluate where

@f=¢; (b)f=06; (c)f=(r"sinmo).

5.8 The Divergence Operator in curvilinear coordinates

Next we want to computgl - F in orthogonal curvilinear coordinates. Although we couicedtly calculate

the divergence in any coordinates, using the Cartesianitiefinthe matrix relating basis unit vectors, and the
chain rule, the results can be found with less effort fromDineergence Theorem. The Divergence Theorem
is true in all coordinates (since it equates scalars, whakeevmust be independent of the coordinates). Thus

/D-FdV:/ F.ds,
\Y 5

where. is the closed surface enclosing volume

Now, we apply this to an infinitesimal “cuboid” with one corrag (uz, up, uz) and edges corresponding to
change®u;, duy, duz in each coordinate; so this has eight corner@atuy, uz), (us + dug, Uy, U3), ... (Ug +
Ouy, Uz + duy, Uz + dug). From before, the volume of the cuboidd® = (h;du;)(hpduy)(hzdus). For a
sufficiently small volume, we can approximaie F as constant acrog®/, so the left-hand side becomes

(D . F)6V = (|:| . F)(h1h2h35U15U25U3) .
Next we consider the right-hand side of the Divergence Témorwe need to take the surface integral
over the six faces of our cuboid, and add results. First clamgihe integral of.n over the face of the

cuboid where the first coordinate has valyet du;. This face is a rectangle with unit normak; and area
(h20up)(h3dus), so the surface integral is approximately

(h2hgduz0usFy)y, 15y,
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where the subscript shows it is evaluatedigt- du;. On the opposite face a we have unit normal-e;
(pointing outwards i.e. away from the first face), so the acefintegral gives us
—(h2h35U25U3F1)u1 .

Repeating the above for the other four faces we get symrnaktasults; finally summing the six terms and
then taking the limit a®V — 0, we obtain

1
O.-F = li — hydushzdusF — (hoduohzduzF
5u175J2rT]5u3—>06V (h20uzhgdusFy )y, 4 5u, — (h20Uzh3dUsF1 )y,
+(hgdughydus )y, 1 su, — (NadUshi duLF2)y,

(P BULNRBULFs )y s, — <h16u1h25u2F3>u3} |

Though each pair of brackets looks the same, this is not zause thé's andF’s are different on opposite
faces of the cuboid; the first two terms give &g, times the partial derivativé /du; of the bracket, and so
on for the next pairs, so this gets us the result

_ 1 [alhehsFy) | d(hshio) | d(huhoFs)
hihohs oup oup dus '

0-F (5.8)

Note: In this last step, we have taken sod@s outside the brackets and cancelled them with the ones
in 8V, but we must leave thi's inside the differentiation since thi’s generally vary with position. This
comes about because our “cuboid” may be slightly “taperisg"the areas of opposite faces are not exactly
equal; and differentiating thig’s takes care of that.

Example 5.7.What isO- F in cylindrical polar coordinates, whefe= Fye, + Fyep + Fz€; ?

In cylindrical polarsus,up,u3z) = (p, ®,z) andh; = 1,h, = p, h3 = 1. Hence

_1[0(pFp)  IFy  J(pF)
TF=51"00 Tae T oz

Note that we can apply the product rule, and sidpgdz=0,dp/dp = 1 we get

1_ 0F, 10F, 0F,
0 F= Rt 5+ 50 o

Note: Itis important to note that aR, term has appeared here, which is not a derivativeé.of his has
appeared because the coordinate linegpftiave a “built in divergence”, they all radiate outwards frime
z-axis, so a field with constaf}, has a positive divergence term due to this.

As a further example we can note that in cylindrical polars, pe, 4 0e, + z&,. Plugging in components
(p,0,2) to the above, we get
Or=1+1+0+1=3

which agrees with the result in Cartesians, as it must.

(If we had just take@p/dp + dz/dzwe would have gofl - r = 2; clearly wrong) .

Example 5.8. What isJ - F in spherical polar coordinates, whefe= Fr e 4 Fgeg + Fypey?

In spherical polarsjus, up,u3) = (r, 0, @) andh; = 1, h, =r, hg = rsin6. Hence

1 d(r?2sinBF) d(rsinBF d(rF,
(resi r)+(' 9)+(rp)

H-F=2sne ar 96 a9
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5.9 The Curl Operator in curvilinear coordinates

Finally we want curl: as before we have curvilinear coord#sdu,, Uy, uz), and a vector field = Fie; +
F.e; + Fse3 ; we want to calculate

OxF=(0xF)ie1+(0xF)e+ (0 xF)zes,

so we want the 1,2,3 components of the above.

In analogy with the previous section, we use Stokes’s thredoeprovide a coordinate-independent defi-

nition of O x F:
/ (Ox F)-dS:/ Fdr,
where. is a surface spanning the closed cu#e

To calculate the 1-componefifl x F)q, consider a planar curve around a small “rectangle” on asarf
of constant;, with sides given by small changés, anddus. From previous results, the vector area of this
rectangledS = h,d0uyhzduz er; now taking(d x F) - dS, the 2 and 3 components of x F disappear so the
LHS of Stokes’s theorem is approximately

(D X F)1h25U2h35U3

Now looking at the RHS of Stokes’s theorem, the line integralind the edge of the same rectangle is given
by adding the line integrals along the four sides: this israpinately

(h20Uz2F2)u; + (h30U3F3) yy 4+ 5u, — (M20U2F2) s+ 5u; — (N30UsF3)y,

where the subscripts denote that the term is evaluatedtatahge, and two minus signs appear because oppo-
site sides are traversed in opposite directions arounditised rectangle. Equating the last two expressions,
and taking the limit a®u,, duz — 0, we have

o i . (h3F3)U2+5U2 - (h3F3)U2 _ (hZFZ)U3+5U3 - (hZFZ)Us
(D x F)l a h2h3 6u2!15nu]3—>0 l: 5U2 5U3
_ 1 (a(hst) 5(h2F2)) .

hohs \ du,  dug

This is just the 1-component &f x F. To get the 2- and 3- components, we just repeat all the above
for two more small rectangles in surfaces of constants respectively; this looks the same but cycling the

1/2/3’s, and we get
(0% F) 1 (ﬁ(thl) 0(h3F3)> ,

- h3h1 0U3 0u1
1 (0(hR) d(hiFy)
(D x F)3 o h1h2 ( ﬁul B dUZ '

These results can be written in a compact (and more memoifabfe as a determinant:

hiey hex  hges
d/dul d/auz 0/0U3
hiFr R hsRs

OxF= . (5.9

hihohs

Once again, in Cartesian coordinates this simplifies to thi-known expression from Chapter 3.4.

Example 5.9. What isO x F in spherical polar coordinates?
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In spherical polar coordinatés 8, ¢) we haveh; = 1, h, =r, hs =rsinf. Hence, using the determinant
form:

1 & reg  rsinfeg
F rFg  rsinfF,
or in expanded form
1 d(rsin@Fy) d(rFp) 1 [0FR 0(rsinBFy) 1[9(rFg) OJFK
OxF=—= - - —  ———|ep+ - — =~ €p.
r2sin@ 20 170 rsin@ | do or r or 00

Note that since is independent of andg, etc., we can for instance take theutside the differentiations in
thee, component and cancel it with arin the denominator. Remember the answer is a curl so it's tovec
field. Do not add all the components together, forgettingvietorse, etc (this is a common error).

Note: the full expression above looks quite daunting. However anynproblems this may simplify
considerably using symmetry: for example, if a given prable symmetrical around theaxis, then we will
haveF, = 0 anddF; /0@ = 0 anddFg/d @ = 0, so four of the six derivatives will vanish.

Exercise 5.3.Show by expanding it that the determinant definition is egjeint to the full expressions
for the individual components given above. O

Exercise 5.4. What isO x F in cylindrical polar coordinates?

Note that ifp andz have dimensions of length amgis dimensionless (because it's an angle), then all the
terms in the expression fat x F should have the same dimensions, namely the dimensidhslivided by
length. This is a simple check that you should make. O

Exercise 5.5. Use spherical polar coordinates to evaluate the divergandesurl ofr /r3. [Hint: don't
forget that in spherical polar coordinates, the positiocioer is equal tore;.] O

Exercise 5.6. State Stokes’s theorem, and verify it for the hemisphesaalacer = 1, z> 0, with the
vector fieldA(r) = (y, —X, 2). O

Exercise 5.7. The vector fieldB(p) = (0,p~1,0) in cylindrical polar coordinate$p, ¢,z). Evaluate
0 x B. Evaluate the line integrgl, B.dr, where? is the unit circlez=0,p =1, 0< ¢ < 211. Does Stokes’s
theorem apply? O

Note: To conclude this chapter, we will note that many applied mathPhysics problems involve an
expression like12V, whereV is a scalar field andl? is the Laplacian operator, in cylindrical or spherical
polar coordinates. We can get the expression&lfat in polar coordinates using firstly the definition Eq. 3.10
(recall this wag1?V = div(gradV)) , and then using Eq. 5.7 for grat] then taking div of that with Eq. 5.8.

The results are available in most textbooks; you will not kgeeted to memorise those, but you might

be given them in an exam question and asked to calculate Bmgges$o it's worth taking a look especially if
you are taking applied maths courses later.
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Appendix

Other ways of doing Example 5.5 are as follows
The second method is to divide the volume removed into twtspé) a cylinder with radius sif; and

height co®;, and (ii) a ‘top-slice’. Volume (i), the cylinder, is easyr&ir? 6, cosb;. To get volume (ii) we
integrate ovep and there

1 V1-72 1
4n/ dz/ pdp:2n/ (1-2)dz= 2T (24 co6, — 3coshy).
cosfy JO cosf; 3

The sum of volumes (i) and (ii) i%’—‘(l —cos 6;) as expected.

A third way also divides the volume removed into two part9: af ‘ice-cream cone’ or cone with a
spherical top, and (ii) a cylinder minus cone. The volumes(i)

6 1 4
471/ 1siné)d@/ rzdr:?n(l—cosel).
0 0

Volume (ii), a cylinder with cone removed, is a bit harder:

cosf; sin6y cosfy . 41T .
471/ dz/ pdp = 271/ (sir? 6, — Ztarf 6;)dz = ?sm2 6, cosb;
0 z 0

tan6;

(which notice is% of the volume of the cylinder). Again the sum of the volumeegmnated iéf(l —cos6y).

Finally, a fourth possibility is to integrate for the volurmemaining after coring, which is

cosb. \V1-2 cosb.
471/ 1dz/ pdp:2n/ 1(1—22—sin291)dz:%nco§91.
0 S| 0

in91
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SUMMARY OF ORTHOGONAL CURVILINEAR COORDINATES

In orthogonal curvilinear coordinatdsi, U, Uz), with corresponding unit vectors;, e, e3 and arc-
length parameteis;, hy, hs, the gradient of a scalar fieM is given by

10V 10V 10V
&+ ——-—=63 ;

IV=""—e+——o
hl 0U1e1+ h2 0uz h3 0U3

the divergence of a vector fielel= Fie; + Fe, + Fzes is given by

1 7} 7} 7}
= A 5 ——(hsh ;
O-F hahohs {aul(hzhaﬁ)—i— 0uz(h3th2)+ au3( 1hoF3)

and the curl of the same vector field is given by

hier e hses
d/dul d/dUQ ﬁ/dU3
hiFi  hoR  haRs

OxF = hahahs

Cartesian coordinates:
(u, Up, U3) = (X, Y, ) ; arc-length parametetg =1, h, =1,h3=1.

Cylindrical polar coordinates:
(u1, Up, U3z) = (p, @, 2) ; arc-length parametets = 1,h, =p,h3=1.

Spherical polar coordinates:
(u, Up, u3) = (r, O, @) ; arc-length parametets = 1,h, =r,hz =rsin6 .
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Chapter 6

Fourier series

Last updated: 01 Dec 2010.
Syllabus section:
6. Fourier series: full, half and arbitrary range series. iBaval’'s Theorem.

Fourier series provide a way to do various calculations watid to analyse the behaviour of, functions
which areperiodic: this means that they repeat the same values in a regularpatt are defined in a finite
range. Specifically, a function which jgeriodic with periodL will obey an equation

f(x+L)=f(x) for all x

and to start with, we will assunie= 2 also for convenience. We already know thatimoand simxfor any
integem have period 2. (So, of course, do the other trigopnometric functions suctaex, but these have the
disadvantage of becoming unbounded at certain valuesaegis unbounded at = 11/2).

The basic principle of Fourier series is to express our picifunctionf (x) as an infinite sum of sine and
cosine functions,

(o)

f(x) = %(an CosNX+ by sinnx)

for a periodic and piecewise differentiablé¢x) (in fact, for any function defined on a range of lengtt) 2
We will slightly modify this way of writing the series soon.

Such a series splité into pieces of different “frequency”: geometrically, eaghthe simx andcosnx
terms has exactlp positive and negative“wiggles” over the rangec& < 211, and thean, b, are constants
telling us how much varies at each different frequency.

This technique (and its generalisation to Fourier trama&rhas a large number of practical applications,
including: resolution of sound waves into their differereduencies, e.g. in MP3 players; telecommunica-
tions and Wi-Fi; computer graphics and image processingo@smy and optics; climate variation; water
waves; periodic behaviour of financial measures, etc.
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6.1 Full range Fourier series

As above, the idea is that we have a given functigx) defined for a range of values gfof length 21, say
—n< x < 1T, now we approximate this function as an infinite sum of trigaretric functions, as

f(x) ~ S(x) = 320+ Y ancosnx+ Y bysinnx. (6.1)
n=1 n=1

whereap, b, are an infinite series of constants to be determined. Thé-highd side of thisS(x) for short, is
called theFourier seriesfor f(x), and the set of coefficients, b, are called thé-ourier coefficients Here
the%ao is really a cos@= 1 constant term, and m}ais putin for convenience as we see below. (There is no
point in including abg term since sinf= 0).

Clearly, to make progress we have to actually calculataghie,; this looks very hard since we there are
infinitely many of them, but is actually straightforward mgitheorthogonality properties of simx cosnx:
the key results we need are, for any two non-negative insggandn,

s
/ cosmxsinnxdx = 0 (6.2)

-1t

T 0 ifm#n

/ cosmxcosnx dx = {n ifm=n#0
o 2m ifm=n=0

- 0 ifm#n
/ sinmxsinnx dx = { m ifm=n#0
- 0 ifm=n=0

All of the above are simple to prove using the trigonomettientities from Chapter 1, e.g. cAgosB =
%[cos(A+ B) + cogA—B)] and similar. Using these, we can find the Fourier coefficigivsn f (x): suppose
we multiply Eq. 6.1 by cosixfor somefixedintegerm, then integrate from-rrto 1, then we have

m m © o
/ f(x) cosmx dx= / l%ao cosmx+ ;ancosnxcosmx + ; bn sinnxcosmx] dx
-1 -1t

Assuming the sums converge, we can swap the integral sigtharelimmations above, giving

m

11 T © s ©
/ f (x) cosmx dx= 1ag V CoSmMX d% + > an U COSNX COSMX d% + > bn [/ sinnxcosmx d%
-n - n=1 - n=1 -n

(6.3)
Now supposen > 0, and look at the integrals in square-brackets above: thedire is zero. From Eq. 6.2,
the integrals in the middle term are all zero, except for dyame case when = mwhen the integral ist.
The integrals in the right-hand term are all zeros. Thersftre RHS of the above is simply one non-zero
term= a7, SO rearranging we get

1 m
am= —/ f (x) cosmxadx .
) —n

Likewise, if instead we multiplied Eq. 6.1 by sixand integrated, we get

n T © T 0 T
/ f(x) sinmx dx= %ao [/ sinmx d% + z an U cosnxsinmx d% + z by [/ sinnxsinmx d%
—TT —TT 1 -1 n—1 —TT

n=

Again all the square-brackets on the RHS are zero, exceptifercase in the rightmost bracket with= m
which givesrt, so the RHS idbymand we rearrange to

1 11
bm = —/ f(x) sinmxdx .
m/-n
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Finally, we need the special casernf= 0: going back to Eqg. 6.3 the LHS contains aos= cosX = 1;
now theag term on the RHS is the only one which gives a non-zero integedause both the infinite sums
haven > 1 # mand all the integrals are zero. Then the RHS above becémﬁﬁn}, so the above equation
for am is still correct form = 0; note that the funny-lookiné in the original definition Eq. 6.1 was putin to
make that work. (Some books may not have %hm Eg. 6.1, but then we need to add}an the equation
definingag instead). Remember siné= 0 so there is ndyg term to deal with.

The equations above were derived by choosing fixed integerm and showing that all terms with
n £ mdisappeared: however the argument is correct for any veiume so the above equations gia# the
coefficientsam, bm. (The choice of lettem above is arbitrary, but it had to be different to thevhich runs
from 0 to ). Finally, sincemis a dummy label in the above anchas now disappeared, we can change the
letterm back ton and we get

1 T
an E/_nf(x) cosnxdx (n>0) (6.4)

s
by = l/ f(x) sinnxdx (n>1)
mJ)-n
Therefore,to find the Fourier series S(x) for a given f(x), we simply have to evaluate the definite
integrals Eq. 6.4 (using a suitable method such as integraty parts) to gea,, b, for all n; then substitute
those coefficients back into Eq. 6.1.

Next we take an example of actually evaluating &heby, for a givenf (x).

Example 6.1. Find the Fourier series for

_J0 if —m<x<0
f(x)_{x if0 < X< T

Using the formulae above,
1 7 1 7
an = —/ f(x) cosnxdx = —/ xcosnxdx
mJ)-m TTJo
1/ . 1/m
bh = —/ f(x)sinnxdx = —/ xsinnxdx
mw)-m TJo

(the lower limits become 0 because we were gi¥éx) = 0 in [, 0], so that range contributes zero to the
integrals). Evaluating the above, using integration bygave find that:

~ 1 /[xsinnx]" /"sinnxdx _1{cosnxr
& =7 n Jo Jo n Sl on? o
1
= W(cosnn—l)
1
= (=)"-1)

m2

and this gives,, = —2/7m2 whennis odd, ora, = 0 for evenn > 0.

Note that forn = 0 the procedure above containg0so is ill-defined: as is common, we need to treat
n= 0 as a special case, with cos8 1:



Finally we need théy’s, which are

1 /[—xcosnx]™ /™ cosnx 1/ mcosnt  [sinnx]™
by = = (|22 +/ dx) == (- T el
T n o Jo n T n n |,
1 —(=1)"
= —(—mcosnm)+0= (=1
m n
(_1)n+l
- n

(and there is ndyg term, so this giveb, for all positiven).

Putting all thesey,, by, back into the general form Eq. 6.1, the Fourier series we sikedfor is

00 (_1)n+1

T[ (o]
=—— 5 CO 2k+1)x+
4 Z 2k 1)2 g ) n;

sinnx.

where we have dealt with the odd/evefor a, by replacingn with 2k + 1 which must be odd, and summing
overk=0toco.

Although this general method always works (as long as we caluate the integrals), we do not need to
do it for functions we can put into the required form by othexans, as in the next example.

Example 6.2. Find the Fourier series for stm.

Here we use the double angle formula: “sin= 3 (1 cosX)? = 711(1— 2c0S X+ coF2x) = %1(1—
2cosx+ 3 [1+ cos4<])
o) snﬁ‘x_ 3 — Tcosx+ §cos4.
This aIready looks like a special case of Eq. 6.1, so we judeay = ;3’1 (remembering the halfp, = —%,
= 8, and all othela, and allb, are zero.

(Note: We could evaluate the integrals and get the same answer,ébdbw't need to do that here since
we can see the result by inspection).

We note that the seri€Xx) is periodic, i.e. if we take the same series for angather than staying in the
range— 1< x < 11, §(x) will obey S(x+ 2m) = §(X). So this can also be used for functions defined on a range
longer than 2rif those functions are periodic with periodi2 Another way to look at this is that if we know
the function on the range-, 1] we can define it for alk by insisting that it be periodic; graphically, this is
equivalent to just “copying” the function infinitely manyrtes for intervals 2, like wallpaper.

We note that the range afcould equally well bga, o + 2] for any a, since all the quantities involved
are periodic so this will give integrals over exactly the sarange of values of. Notea = 0 is often used,
so the range af becomes0, 2.

Exercise 6.1. Find the Fourier series off(x) defined byf(x) =0 in —m< x < 0 andf(x) = cosxin

0<x<TL
The answer should be

o 4k
:_L ™ .
5 COSX+ ; a2 1) sin2kx .
O

Going back to example 6.1, and evaluating both sides-atrr/2: we need to remember that the cosine
of an odd multiple ofrt/2 is zero, the sine of an even multiple @f2 is zero, and the sine ¢2k+ 1)77/2 is

83



(—1)%=1, from chapter 1. So we get

LS N Gl

2 4" L2k+1
LI S S
4 3 5 7 7

A number of results of this sort, giving sums of numericalegrcan be obtained by direct evaluation of
equation (6.1) at some particubarThe only tricky pointin using this is to guess whilo evaluate: usually
one of 1, 11/2 or 11/4 is what is needed, to make the sine and cosine functionssgivale results such as 0
or (—1)" etc.

Warning: so far, we have not actually proved that the infinite sBf®) on the right-hand side of 6.1
actually converges, or has limi(x). Strictly, what we have shown is that IF there exists an itdisumS(x)
which does converge tb(x) over—m < x < 1, then the coefficients must be given by Eq. 6.4.

We discuss the question of convergence and the limit in tkegeetion.

6.2 Completeness and convergence of Fourier series

We now give answers to two questions: can every function pétiod 2t be written this way, and does the
seriesS(x) in 6.1 with coefficients 6.4 always converge abat These ideas are referred to as completeness
and convergence. To specify more fully, consider the surh@fitstN terms withx fixed: this sum definitely
exists since all they, b, are bounded iff (x) is bounded, and we get a sum of a finMebounded terms).
Then letN — oo: if the limit exists, ther§(x) is said to converge at Completeness amounts to asking if this
limit S(x) equals the value of the original functidrix). The proof of the relevant properties is not part of
this course, but the result is. As usual, the conditionsametlike small print in contracts — ignorable most of
the time, but important when things go wrong.

Theorem 6.1 (Fourier's theorem or Dirichlet's theorem) If(k) is periodic with perio®rfor all X, and f(x)
is piecewise smooth i+, 1), then the Fourier series(8) with coefficients gand h, (defined as above)
converges tg (f (x+) + f(x—)) at every point.

Here “piecewise smooth” means sufficiently differentisdti@ll except isolated points, arfi@x+) means
the limit of f(x+ &) asd (positive) tends to zero, which is called the upper limitight limit of f(x) atx.
Similarly f(x—) is the limit of f (x— ) asd tends to zero, called the lower limit or left limit). At amywhere
f(x) is continuous, we havé(x+) = f(x—) = f(x), s0S(x) = 3[f(x) + f(x)] = f(x) so the Fourier series
does converge to exactlx). At points wheref (x) has a discontinuityf (x+) and f (x—) are not equal, and
thenS(x) = %(f(x+) + f(x—)) gives the average value dfx) on either side of the discontinuity: but this
may not be the value df(x) itself at the point.

Typically, we will find that ash — o, the coefficients, andb, tend to zero like 1n or faster.

Example 6.3. Taking the function and series of Example 6.1, Fourierstke tells us that at =
the series converges & f (1+) + f(11—)) = 3(0+ mm) = 3, usingf (1r+) = f((—m)+) by periodicity. The
series then gives
T 2

= Z+k;)n(2k+1)2 ’

NS
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since simrr= 0 and co§2k + 1)it= —1. Subtractingt/4 we have

m hd 2 2 1 1

i I ——— therefore
4 k;"(2k+1)2 n( Txte )

s S

8 P52 T

As a nice corollary of the above, we can get the infinite sunafiantegers (not just odd ones) as follows:

define 11
then dividing by 4 gives
1 1 1 1

T==+=+=+...
i zZtete”
S0 subtracting,
3 1 1
T=14++5+...
7 tptemt
which is the series above. Therefore
4
T = —_— = —
38 6

Note: There is a strange detail. Fourier’s theorem tells us whaphas in the limit of the infinite series.
But if we take any finite number of terms we obviously cannotaha discontinuity exactly, since the finite
series must give a continuous function. It turns out that famye sum overshoots the function on either
side of the discontinuity: this curious effect is called R8s phenomenon— adding more terms does not
reduce the overshoot, it just moves the overshoot closengaliscontinuity. (In the limit of the infinite
sum, the overshoot gets “infinitesimally close” to the drfruity, so for anyx a finite distance from the
discontinuity, this does not matter).

Example 6.4. The square wave.

Consider the “square wave” function defined by

_J0ifx<0
f()‘)_{1ifx>o (6:5)
in the domair—r, 1] and periodic with period &. This gives
1—cosnmm
=1 ano=0 by=—]_—
soby is O for evenn or 2/(nm) for oddn. Therefore,
sinnx
fx)=3+2 (6.6)
2 nGaa 7T

Figure 6.1 shows the square wave and its approximationsstiyoitirier series (up to = 1 andn = 5).
Several things are noticeable:

(i) even a square wave, which looks very unlike sines andnessican be approximated by them, to any
desired accuracy;

(i) although we only considered the domainr, 7] the Fourier series automatically extends the domain to
all realx by generating a periodic answer;
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Figure 6.1: Square wave (as in equation (6.5) but with thecaddirection stretched for better visibility) and
Fourier partial sums: two terms and four terms.

(iii) at discontinuities, the Fourier series gives the mealue of f (x) on either side of the discontinuity.

(iv) close to discontinuities the Fourier series overskoot

Another result telling us in what sense we have a good appratidon isParseval’'s theorem:

Theorem 6.2 (Parseval's Theorem) If (k) has a Fourier series defined as in Section 6.1, then

T 0
/ f()%dx=mag+ 1 (a2+Db).
-

n=1

For a formal proof one has to deal with convergence of theitefisum, but if we assume convergence
we can write

f(x)?% = <%ao+ Z an CoOSNX+ Z bnsinnx> (%aﬁ- Z am COSMX+ Z bmsinmx>
then we can expand this out into a double sum
1 0 [ee] . 0 0 .
f(x)?2 = Zag +3a <z amCoSmx+ z bmsmmx> +3ag <z an CosnX—+ z bnsmnx>
(Note: in the aboven andm can be any letters, but we have to use tlifferent letters since we're summing
over both of them independently).

anamcosnxcosmx+ anbmcosnxsinmx+ bram sinnxcosmx+ bybmsinnxsinmx)

IIM8

Now as before we integrate the above fram —rrto 71, and again we swap the sum and integral signs:
the first term is a constant giving integl(aj/4)a(2)27r, the next two terms contain only single sin’s and cos’s
which all integrate to zero. Then in the double sum, we lookagults from Eq.6.2 again, and all the terms
with m# nintegrate to zero: so we can turn the double summation initeggessummation withm = n (think
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of summing over an infinite chessboard where all off-diageqaares contain zeros). Then, therakxtosnx
terms also integrate to zero: finally the coscosnx terms and simxsinnx terms (withm = n) integrate to
1T, so the overall result is

/ f(x a0(2n)+0+0+z (a2m+0+0+b2m)

this is Parseval’s theorem as above.

In a very similar way, one can show that for two functiohls) and g(x), with f(x) having Fourier
coefficientsa,, by andg(x) having coefficients\,, By, we obtain

/ f(x dx_zrravo+rrZ (nAn+bnBr)

Example 6.5. Go back to the Fourier series for the square wave, Eq. 6.5eab®utting this into both
sides of Parseval's theorem, we have

T n 4 2 1
1 = — 4
/o x 2 TTZZ (2k+1)?
m o4 1 1
mo= 5 71(1+32+ +...)
On rearranging we get
m = 1 1

1
R -1
g - ki retete

which we had already derived in another way in Example 6.3.

Parseval’'s theorem is important in practical applicatidasexample telling us numerically “how good
is an approximation td (x) given by taking only a finite number of terms in the Fourieieg(as we have
to do in real-world evaluation on a computer). We proceedéevis: defineSy(x) to be the sum up to and
includingn = N of the Fourier series fof (x), thenS(x) is the infinite sum (the limit o6y (x) asN tends to
infinity). If we defineEn(x) = f(x) — Su(X), this is the “residual error” if we keep only the fiflstterms of
the series.

Itis easy to see that the Fourier seriesEqi(x) has coefficients zero ford n <N, anday, b, forn> N,
so applying Parseval's theoremHEg (x),

(o)

T
| EnPdx=m Y (a3+b)
n A
If we divide the above equation by the range 2he left-hand side becomes the mean valugpbver the
range, which is the “mean square error” in our approximagg(x). So, if the right-hand side is small, i.e.
the sum ofa + b2 is converging rapidly to its limit, we know th&(x) is a good approximation of our
original functionf (x).

6.3 Odd and even functions; Half range Fourier series

We recall the definitions of an “even” and “odd” function:
f(x) is evens f(x) = f(—x) forall x.
f(x) is odd< f(x) = —f(—x) for all x.
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Any function f(x) can always be written as
() = 31F00 + F (=] + 3[f (x) = F ()] ,

in which the first bracket on the right is an even function anel $econd bracket is an odd function, by
construction.

Since sirkx is odd and cokx is even, we might suspect that for even functidiis) only cosine terms
appear in the Fourier series (& = 0), while similarly for odd functions only sine terms appeaud all
a, = 0. This is correct, and we can easily check this, e.g.

m
Tan, = / f (x) cosnxdx
-7

0 m
/ f(x) cosnxdx+/ f (x) cosnxdx
- 0

0 m
/ f(—u) cog—nu) (—1)du+ /O £ (x) cosnxdx

=TT

where we have substituted= —x in the first half, so its range becomado 0. Now this is

T T
— [ f(-u) cosnu(—l)du+/ f (x) cosnxdx
0 0
T

/ (F(—x) + (x)) cosnxdx

0

where we have replacerby +x since it's a dummy variable. The above is clearly O() is an odd function.
Similarly

iy, = /On(f(x) — f(—x)) sinnxdx.

To summarise the above, i{x) is an even function, we have
2 i
an= 7_1/ f(x)cosnxdx, b,=0foralln
0

(where by symmetry we can halve the range of integration fdcmr, and multiply by 2 ). And iff (x) is an
odd function, alla, =0, and

2 T
by —/ (x) sinnxdx .
mJo

We can use this property to make a Fourier series floalirange usingonly sine or only cosine terms,
as follows. Suppose we are given a functig(x) defined on0, m] (a “half range”), then we can define two
new functions on the rande-, 11]: we construct an even functidi{x) such thatf (x) = ¢(x) in (0, 1) and
f(x) = p(—x) if —rm< x< 0. Likewise we define an odd functigiix) such thag(x) = ¢(x) for0 < x < ,
andg(x) = —¢@(—x) if —m<x<O0.

Note thatboth f(x) andg(x) are equal tap(x) on the rang€0, 1), but they have opposite signs on the
range(—11,0). (Note also thah(x) = %(f(x) +9g(x)) is equal top(x) on (0, 1) and zero or{—1t,0)).

Inserting thesd (x) andg(x) into Eq. 6.1, our even functioh(x) gives a Fourier series with
2 m
an = —/ @(x)cosnxdx , bh =0,
mJo
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and the odd functiog(x) gives a Fourier series with
2 (m .
an=0, bn:—/ @(x) sinnxdx .
mJo

These are called respectively thalf-range cosine serieandhalf-range sine seriesor ¢(x) ; both of those
series are equal tp(x) on the rang€0, 1), but they have opposite signs on the rafget, 0).

(Also it is clear that if you take the average of the above tenes, you get the series fb(x) above,
which is equal tap(x) on (0, i) and zero or{—11,0)).

Example 6.6. f(x) is such thaff (x) = f (x+2m) andf (x) = — f(—x), and on < x < 11, f(X) = X(1T—X).
Find its Fourier series, and prove that

TS i
CE Y

The givenf(x) has period Zr and is odd, so we know the series contains only sine terms, and
AN .
by = / X(711— X) sinnxdx
0

bls
2 n m
z —x(n—x)cosnx} +/ (n—2x)cosnxdx}
T n lo Jo n

{I
{ [(n— 2%) Si:;ﬂ :+ 2/07T Si;';'xdx}

2
T
4
bl
0 forn= 2k,
{ forn=2k+1.

Thus )
_ 8 2 sin(2k+1)x

RPN

(6.7)

To get the series requested, we try evaluating (6.7) at scsueh that sitk+ 1)x = (—1)K. This occurs
atx = m/2. Evaluating both sides there gives
™ 82 (-1
Hm2) =7 = I_TkZO (2k+ 1)3

which on rearranging gives the required result.

6.4 Arbitrary range Fourier series

Here we extend the Fourier series to the case when the rarme édnction is not-1 < x < 1. If we have
f(x) defined in arange-L < x <L, instead of-11 < x < 11, then we can define a new varialyle= x/L (a
rescaled version of), so that— <y < rmand writef as a Fourier series

f(x) = 38+ Y (ancosny+ bnsinny)
n=1
1 il N7IX . NTX
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where

1 Ly nmx , mx
an = 7_T/y:—n (n)cos—d(L)

1 I_f d
= E_/,L (x)cosT X.

and similarly
1/t . N7X
= E/_Lf(x)sdex.

Here we have just “rescaled”: observe thakampes from—L to L, the quantitynrx/L goes from sm to
+71m so there are again an integetwiggles” in each cos/sin term.

For functions which are a simple stretch/squash of anotirestion whose Fourier series we have already
worked out, we can rescale variables.

Example 6.7. Find the Fourier series for the functigiix) of period Z such that

_J0 if —c<x<O0
g(x)—{x if0<x<c.

Using the result of example 6.1, replacixgy y, we have

co 1)n+l
= — <
f(y) 4 Z 2k 172 5 Cog2k+ 1) y+Z sinny mT<y<m
TIX T 2 (2k+1)mx & (—1)'”rl _ NmX
—-) = — —c<x<
:>f(c) Z Tk 12 3 COS— +Z ——sin— c<x<c

But we havef (rx/c) =0 for —c < x< 0, ormix/cfor 0 < x < ¢, sof (rx/c) = (m/c)g(x) forall —c< x < c.
So we just multiply the series above by, and get

_c £ 2c (2k+1)mx &2 .
o) = Z_Z Rkt 12 % ¢ +Z m "¢

Appendix

This section will not be lectured and is not for examination

The following shows the kind of application Fourier himsletfd in mind and gives an example of some
methods in partial differential equations which we will maeanother context in the next chapter.

Example 6.8. In the propagation of heat in a solid in one dimension, thepenature® obeys the
equation
926 06
o2 oat’
This is the simplest case of tikffusion equation.

We introduce here a new idea which will run through the resthef course. This iseparation of
variables: we can see that if we look for a solution in the fol(x)T (t) we will find

d?x dr  kd®X 1dT
Ki3e *d " Xae Tda
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Here the left side depends only arand the right side only ot hence the two sides must both equal the
same constant (only a constant can depend only, @md only ort, at the same time). We then have two
equations

d2X

— =], A= d_T,

X dx2 Tdt
to solve, where\ is our unknown constant. When we have solved these, we ryultip answers together to
solve the original equation. In general we assume (and thdseally we can prove) that the full solution is
a (possibly infinite) sum of solutions of the separable type.

For Fourier’s problem we proceed as follows:
At the earth’s surface, the temperatdrés assumed to vary periodically over the year (for simpjicgo it
has a Fourier series in tintevith period 1 year. We defineto be the depth into the earth. Then at the surface
x = 0 we can write ont

2nmtt
—— +bnsin

-1
9—2ao+r;(ancos T T )

with T = 365/2 days.

Now at otheix we leta, andb, depend oix and put these into the differential equation: this meansree a
writing the whole solution as a sum of separable solutionshith thet dependence gives a Fourier series
(with different coefficients at eact). Plugging this into the original equation and equatingfiicients in the
Fourier series we get
d%a, _2nmt 2nm 2nmt

kﬁ cos T ?bncos?.
kdzbn gn2ht _ 2o . 2n7t
ox? T T ST
These can be written as a single complex equation
0% (b +i 2nmi .
(bn+ian) _ (bn+ian).

ox2 T

This equation is easy to solve as it is a linear equation wotlstant coefficients. [For those who have done
the Differential Equations course, the auxiliary equatias roots

T

and that gives the solutions. We need the solution with ativegeeal part (temperature variation decreases
as we go into the earth).] The solution is

bn+ian= cexp(—,/E—_Tl_T(lJri)x) ,

for some constart. This means we have a solution which varies sinusoidalli tuihe, but the amplitude
of variation decreases by a facteiin a distance,/kT/nm. Some realistic figures ade= 2.10~2 cné/s,

T = 36524.3600/2 secs, giving 1A = /kT/m= 177 cm for annual variation and roughly 19 of this for
daily variation. The amplitude of the annual variation leslin a distance such thatAx = In2, about 123
cm. So in 5 metres the variation of temperature reduces bygtarfa/16 (it also turns out that at that depth
the variation is out of phase with the surface, i.e. coolestid-summer).
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6.5 Fourier Transforms

This section is not examinable, but is included since it mayduseful for later courses.

To conclude this chapter, it is worth a quick look at the esten of Fourier series to Fourier Transforms.
The principle remains the same, i.e. expressing a genematitin as a sum of trigonometric functions of
different frequency.

There are two main steps to get from Fourier series to Fotraasforms: firstly, we introduce complex
numbers and use Euler’s formula

€™ = cosnx+ i sinnx

Then we change the definition of the Fourier series to

f(x) = % Ccne™

n=—oo

and the coefficients, become L
m .
- f —INX d
Cn 2n/_n (x)e X

What we have done here is just make the coefficieptsomplex, extended the infinite sum to negative
integersn, and changed the prefactor fronirito 1/(2m) to compensate for doubling the number of terms
in the sum. (The = O case does not have positive and negative terms so the Hadf iB.1 gets absorbed in
the above). In this case we can easily see, taking real arginany parts of the above, that = %(an —ibp)
where thean, b, are the same as previous sections; assuniixgy is real-valued, then it is clear from the
definition thatc_, = %(an +ibp) = ¢,, the complex conjugate.

This has not really done anything very new, it just turns teal formulae foran, b, into one complex
formula forc,. The real parts of the,’s are the cosine terms and the imaginary parts give the simnest if
we extract the two terms fern and—n in the series forf (x) we have

€™ 4-cne ™ = I(an—ibn)(cosnx+isinnx) + 3(an -+ ibn) (cosnx— i sinnx) (6.8)
= (apcosnx+ bpsinnx) | (6.9)

so the imaginary parts cancel, and this agrees with what wda#ore.

This also allows us to extend the formula to complex-valéied, in which case the terms, +c_, are
no longer real, and their imaginary parts give the complex gfaf (x) .

To extend to Fourier transforms, we generalise the abovedatbitrary-range series, i.e. 1&tx) be
periodic with period L, i.e.

f(X) — zcnefzninx/L
L/2 .
Ch = E/ f (x)e2"™/L dx
L /L2

Now if we write = 211/L andwy, = nd this becomes

f(x) = %cnéwx

o L/2

_ = j (WX
Ch = ZnLL/Zf(X)d dx

92



and if we let the rangk tend to infinity, letd, = c¢,/9, let d tend to zero, we can convert the infinite discrete
series of coefficientd, into a continuous functior¥ (w), and (skipping some details) we arrive at

fx) = / F(w)e dw
1 /* i
= — f(x)e' . A
F(w) 271/_00 (x)e”"'* dx (6.10)
Here % (w) is called theFourier transform of f(x), with w called the (angular) frequency , which is the
continuous version of thewe had before.

Note: there are several possible “arbitrary choices” of whereuttipe 27's and minus signs in the above
definitions; some books put a factof\Y27t before both integrals, which makes them symmetrical. Other
authors leave ar2inside the exponential term, in which casds usually changed to a different letter e.g.
v = w/2m. As long as this is done consistently, it doesn’t mattertbate must be factors ofre’somewhere
in the definitions.
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Chapter 7

Laplace’s Equation

Last update: 13 Dec 2010.

Syllabus section;

7. Laplace’s equation. Uniqueness under suitable boundanditions. Separation of variables. Two-
dimensional solutions in Cartesian and polar coordinatesisymmetric spherical harmonic solutions.

7.1 The Laplace and Poisson equations

Let ®(r) be a scalar field in three dimensions, as in previous chaftaace’s equation is simply
Pd=0 (7.1)

where, as we met in Chapter 3[6® = - (O®) = div(grad®); here[? is called theLaplacian operator,
or just the Laplacian.

Remember from before, b is a scalar field, its gradieft® is a vector field, and then taking div of that
gives us another scalar field: so Laplace’s equation is aseguation.

In Cartesiarx, y, z coordinates, things are simple: we recall the definitionsfiChapter 3,

e =t oyl T o7

and JF JF R
s fm o903

e TR T

PuttingF = 0@ above, sd; = d®/dx etc, Laplace’s equation in Cartesians is

0’0 9’0 9’

0% = = 7.2
ﬁx2+dy2+z922 0 (7:2)

Note that if we are using other coordinates (e.g. cylindpcdars or spherical polars) we must use results for
grad and div in those coordinates from Chapter 5, so it wikldifferent; we look at those later.

Laplace’s equation often occurs as follows: suppose we Aaeaservative vector field, so that- = (0P
for some scalar fiel@® as in Chapter 4.7; then if - F = 0 this gives Laplace’s equatidifd = 0.
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Aside: Laplace’s equation is the simplest and most basic exampdmefof the three types of second-
order linear partial differential equations (PDESs), kncasthe‘elliptic” type. Laplace’s equation is a linear
homogeneous equation.

A generalisation of Laplace’s equationReisson’s equationwhich is
2= f(r)

wheref (r) is a given scalar field. Laplace’s equation is clearly a sj@zse of Poisson’s whefér) = 0 at
all points in the volume of interest.

The basic examples of the other types of PDE arentee equation

wherec is constant (usually the speed of sound or light) tisdtime;
and theheat equationor diffusion equation

of 2
E—KDf

wheref is temperature in a solid, andis a constant. (We met the heat equation with a single spaitieble
in Example 6.8 on Fourier series ).

In maths, the wave equation is an example dhgperbolic’ PDE and and the heat equation is a
“parabolic” PDE. These names are potentially confusing since the sokitiave nothing to do with el-
lipses, parabolas, or hyperbolas, but this is just a “slaontfi because the powers and signs in the equations
look rather similar to the equations for ellipsoids, padaims and hyperboloids from Chapter 1.

Laplace’s and Poisson’s equations are very important, betlause of their occurrence in many physics
applications, and because they are the basic examplespifceRDEs. We are now going to spend the rest
of this chapter considering some solutions of Laplace’saéiqn in 2 dimensions.

We can see directly that there are some simple solutionsbka’s equation, e.g.

® = ¢ constant
= X

etc

8 6 6 6

These clearly are solutions, by direct evaluatiofld® from Eq. 7.2. There are in fact an infinite number of
general solutions to Laplace’s equation, which are knowmeasonic functions.
We easily see thdf? is a linear operator: that is
P(A®y + p®z) = A D201 + pPd,

for any two scalar fieldsp1, @, and any two constants, 4 (independent of position), since both grad and
div have this property. Hence @, and®, are both solutions of Laplace’s equation, sa {81 + p®,. Also,

if W is a solution of Poisson’s equation afdds a solution of Laplace’s equatioW,+ @ is also a solution of
Poisson’s equation, for the sarfif’).

Aside: Considering some gravitational and electromagnetic exesmf conservative fields, and using
the Divergence Theorem
/ O.-FaV = / F.ds
% s
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we see that ifJ- F = O everywhere there are no sources inside the volume, whichravity means that
there is no mass there, and for electric field means that tkare (net) charge. Hence, Laplace’s equation
describes the gravitational potential in regions of spabere there is no matter, and the electric potential in
regions where there are no charges.

If instead there is a net charge dengitythe electric fielde satisfies

1
D-E—g—op(l’)

whereg, is a constant of nature. (This is one of the four Maxwell'satipns). Combining this witk = —O®
gives
1
[P0 =——p(r).
&

That is an example of Poisson’s equation as we met aboveat&plequation is of course a special case of
Poisson’s equation, in which the function on the right-hside is zero throughout the volume of interest.

7.2 Unigqueness of Solutions to Poisson’s (and Laplace’s) Eation

Here, we will prove that under suitable boundary conditihressolution of Poisson’s (or Laplace’s) equation
isunique. We shall then investigate what the solutions actuallymemme simple cases, in each of Cartesian,
cylindrical and spherical polar coordinates.

As is common in differential equations, there are many galremiutions (in fact an infinite family), so to
find the solution in a specific case we need to be given dmuadary conditions. Recall for a 1-D ordinary
differential equation we often need a function value at onem® ends of a line; but here since Laplace’s
equation works in 3 dimensions, usually we need the valu®(@f to be given at all points on a closed
surface S, and we solve Laplace’s equation to finid the volumenside S. (Occasionally we solve over the
infinite volume outside S, with another boundary condition® at infinity).

Theorem 7.1 Suppose thafl?U = f(r) throughout some closed volume \r ¥ being some specified func-
tion of r, and that the value of U is specified at every point on the serfa bounding volume V. Then, if a
solution U(r) exists to this problem, it is unique.

E(ra?g:é proceeding, we need to recall Eqg. 3.6, which was
0-(UF)=UO-F+(OU)-F
Choosing- = U in the above, we get the identity
0-(UOU)=UD0% + (OU) - (OV) (%)
which we use below.

Now to prove the uniqueness theorem, supposelthaindU, are two scalar fields whichothsolve the
given problem. Defin®/ = U, — U5 to be the difference of our two solutions.

Then, we know thaflW = 0 inside volume V (by linearity), and W = 0 at all points on thefacesS,
since bothJ; andU, match the given boundary condition.
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Now we consider the volume integral
/|DW|2dV - /(DW).(DW)dV
v v
- / 0. (WOW) —WO?W dv  using(+) above
\%
= /D-(WDW) dv -0 since(12W = 0 everywhere iV
v

= /(WDW) -ds (by the Divergence Theorem
S
=0 becaus®/ =0o0nS

Now, the integrand on the LHS is a squared quantity, theedfoalways non-negative, and its integral is zero.
This can only happen if\W = 0 throughouty (otherwise, if0W was non-zero anywhere W, the whole
integral on the LHS will be positive because there cannotriyenggative bits in the integrand to cancel the
positive part, i.e. a contradiction).

Now OOW = 0 throughoutv meansW is a constant througho. ButW = 0 on the boundary of V,
thereforeW = 0 throughou¥. HencelJ; = U, throughout V, so the solution imique. Q.E.D.

Note that we have actually proved uniqueness for Poissapiateon, and Laplace’s is a special case of
that.

[ Aside: It is fairly clear that the final step in the displayed caltigda above also works if, instead of
W = 0 on the boundary,\W - n = 0 wheren is the normal to the surfac® This corresponds to being given
a boundary condition folU - n on the boundary, instead of the valuelbftself. Moreover, it still works if
at each point on the boundary eitigror OU - n is specified. The case wheleis given on the boundary
is called ‘Dirichlet boundary conditiorls and the case wheri@U - n is given is called Neumann boundary
condition$. If we only have Neumann conditions, oW above is still a constant but not necessarily zero, so
the solutionU is unique up to addition of any arbitrary constant. We willyodeal with Dirichlet boundary
conditions from here on, but you may meet the Neumann camditin later courses. ]

The virtue of this uniqueness theorem is that it gives usambie to make whatever assumptions or guesses
we like, provided we can justify them afterwards by showirgihbLaplace’s equation and the boundary
conditions are satisfied: if they are, the solution we founubine the right one, even if our method involved
some educated guesses.

Having proved uniqueness, we now demonstrate how to agtiadl solutions of Laplace’s equation in
some simple situations. In genef(r) can depend on all three coordinates, but we will confine dvesdo
cases depending on two of the three coordinates: we willyduel three most common coordinate systems
as before:

¢ In Cartesian coordinates, we will takgx, y), so® does not depend an

¢ In cylindrical polar coordinates, we will také(p, ¢) soU does not depend anagain, and we relabel
@ to U to avoid confusion with the angle.

¢ In spherical polar coordinates, we will takKr, 8), soU does not depend apand we have rotational
symmetry around theaxis.

The first two of these cases provide us with a nice geomeifritaipretation. Forb(x,y) orU(p, @), we
can forget about the— coordinate: then things reduce to a two dimensional probéerd we have boundary
conditions given on the edge(s) of a region, (say a rectaorgigcle) and we have to solve fd@r orU inside
the given region. Now imagin@ as a varying height. Solving Laplace’s equation in 2D subject to boundary

97



conditions is like taking a rubber sheet with its edges stock rigid frame at the boundary with a “warp”
in the third dimension: the frame fixes the height at the bauypdvhile the rubber tries to minimize its total
area, which is equivalent to solving Laplace’s equation.

For spherical polard (r, 8) though, the 2-D interpretation no longer applies becausesphere still lives
in 3-D.

Note: A “physical” example in three dimensions is as follows: sop@we take a uniform solid object
(of arbitrary shape), and attach a large number of tiny tlstat-controlled heater/coolers to the surface, and
set all the thermostats to some smoothly-varying functiothe surface. The temperature insidi¢r ), will

obey the heat equation

oT 2
e kO“T
with k a constant and boundary conditions set by our thermostatse Wwait a long enough time so the
temperature distribution inside converges to a steadyg,sthe LHS above will then be zero, so then the
temperature inside the solid will solve Laplace’s equatiwith the given surface settings as the boundary
condition. (If our boundary condition i =constant independent of position, we just get the obviouisgo
solutionT = constant inside; but if the boundary settings vary arouedstirface, it becomes an interesting

problem.)

The choice of coordinates will be adapted to the geometrip@fdiomain of interest and its boundaries,
which usually makes calculations easier. For rectanguwanbaries we use Cartesians, for circles or cylin-
ders we use cylindrical polars, and for spherical boundasie use spherical polars. For example, one may
need to calculate the electrostatic potential outside egelobsphere. This would be very messy in Cartesian
coordinates, and is much simpler if we use spherical polardinates instead. (This was one of the main
reasons for studying Chapter5)

7.3 2-D solutions of Laplace’s equation in Cartesian coordiates

We first develop a general method for finding solutidns: ®(x,y) to Laplace’s equation inside a rectangular

domain, with given boundary conditions féron all four edges of the rectangle. In Cartesian coordinates

we saw above, Laplace’s equation is

9’0 9%°d 9’0
=0 . 7.3

ax2 + ay? + 022 (7:3)

and in two dimensions we just drop the last term.

(P =0 (00) =

We will now try looking for a solution of the form

B(x,y) = X(X)Y(y)-

whereX(x) is some function ok only, andY(y) is some function ofy only. Such a solution is called a
separable solution We cannot justify this in advance, but if it works then thégqueness theorem tells us we
are OK. Itis possible to prove that any solution can be wrigte a sum (possibly an infinite sum) of separable
solutions, but this is beyond the scope of this course.

Substituting the abov@ into (7.3) gives

d?X d?y
v Y +X Y 0.
Dividing this by XY gives
1d?X  1d%Y

X2 Ydy?



Now, the left-hand side is a function gfonly, and the right-hand side is a functionybnly. This can only
be satisfied if both sides are the same unknown constant.

Note: to prove the constanX(x) andY(y) must satisfy the above at amyy inside our rectangle: so
consider the above equation along a lirg y) with fixedx = xg and varyingy. The LHS is fixed, so the RHS
must therefore be independentyofi.e. constant. The same argument wijghfixed andx varying shows the
LHS is constant, and it must be the same constant.

Now we call that constantA with the minus sign for convenience, and both sides abovalegh. Thus
we have ) 5
d-X dy
— +AX=0 and — —
dx? * dy?
If A #£ 0, these equations are the differential equations for tragwetric and hyperbolic functions, which we
met in chapter 1, so we know their general solutions as falow

AY =0.

If A is positive, definé = /A and the solution is
X = Acoskx+ Bsinkx, Y = Ccoshky+ Dsinhky,
whereA, B,C, D are any constants. Multiplying these together,

® = (Acoskx+ Bsinkx) (Ccoshky+ Dsinhky) . (7.4)

If A is negative, defink = v/—A and then the solution is
X = Acoshkx+ Bsinhkx, Y = Ccosky+ Dsinky.
whereA, B,C, D are different constants. Then
® = (Acostkx+ Bsinhkx) (Ccosky+ Dsinky) . (7.5)
Note: in each of these solutions there is usually one more conitantwe really need. For example if
in (7.4) AC # 0 we can write
® = AC(coskx+ B/Asinkx) (costky+ D/Csinhky)

using just three constan&C, B/A andD/C: this means that in examples, one of the four constants can
usually be set to 1. One way to do this is to write (7.4) as

® = Lsin(kx+ M) sinh(ky+ N)

for some constants, M, andN. Usually this works fine, except it does not cover the casaabe-= 0.

Finally, we need to deal separately with the case O:
that easily gives us solutioné= Agx+ Bg andY = Cypy+ Dg so

@ = (AoX+ Bo)(Coy+ Do) ,
with more constantfy, By, Co andDy. It is usually convenient to multiply this out and re-writes
® = a + Bx+ yy+ Oxy (7.6)

with a, B, y, & as alternative constants.

Remember, from linearitygny sumof any of the above functions with alkyand any constants is also a
solution of Laplace’s equation. So, if we are given a boupdandition, solving Laplace’s equation basically
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reduces to choosing‘@ick-and-mix” of any sum of the general solutions in order to satisfy allghen
boundary conditions: if we manage to do that, then we haweeddhe problem (and our solution is unique).
If we are lucky, a particular one of the separable solutioitisde this, as we see in the next example.

Example 7.1. Find the solution of
Po="—"+-——=0 (%)

inside the rectanglB: 0 < x < a, 0<y < b, given boundary condition® = 0 on the three sides=0,y=0
andx = a; and® = sin(prix/a) ony = b, for some integep.

We note here thab is zero along three of the sides, and non-zero along the ‘s@® withy = b. Also
since sin0= 0 and siriprra/a) = 0, ® is zero at the pointg0, b) and(a,b) so the given boundary condition
is continuous at the corners.

Can we satisfy the boundary conditions in this case with dnh@ separable solutions above ? We
consider them one by one. Clearly (7.6) will not work sincdaesn’t contain a sin. The form (7.4) is more
promising, since if we take that equation and choose

i
T a

in there, the first bracket becomes 1(girnx/a) which is the function we want on the boundary- b. Now
we just need to choo$® D to make the second bracket in 7.4 equal zero on theysie®, and 1 on the side
y = b; this gives us two simultaneous equations@oD :

Ccosh0+Dsinh0=0
Ccoshnmb/a) + Dsinh(nmib/a) = 1,
and the first of these impligS = 0, then the second giv&= 1/sinh(nrb/a).

A=0 B=1 k

Finally putting the abové, B,C, D back into 7.4 gives us

— sinP™ i PY ) sing P
®(x,y) =sin a sinh a /sinh a

this satisfies all the boundary conditions and Laplace's&qn, so it is the unique solution.

In the above Example, we chose a “sin” in the boundary camditd make it easy: but for more general
boundary conditions, using just one separable solutiohnail work.

However, since Laplace’s equation is linear, we can addiegeeparable solutions to get a more general
solution. In many cases, including the Cartesian one, ib&sible to prove that every solution can be written
as a sum of separable solutions (this is called completerigise separable solutions).

In the Cartesian case we would need to introduce differdoegafA for eachk etc., which we typically
would denoteAx. Sincek can take any value, the “sum” of separable solutions can meigd become an
integral overk; but for the rectangular boundaries in the example above ifenly need to take integer
values ofp, call it n, so the general solution of Laplace’s equation inside thtargyle becomes

D(xy) = a+PxX+yy+oxy (7.7)
+ Z (Ancosnmx/a+ Bpsinnmx/a) (Cycosnrty/a+ Dpsinhnry/a)
n=1

+ Z (ancosrx/b + by sinhnmx/b) (¢, cosnmty/b + d, sinnmy/b)
n=1

1This leads to the use of Fourier transforms, which is the stegi, beyond this course, in Fourier methods
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We note that the sinrix/a terms vanish at = 0 andx = a so they will fit Dirichlet boundary conditions
which are zero on those boundaries. If multiplied by a simpthey also vanish o= 0 so are non-zero only
ony = b: to get similar forms which are zero gt= b and non-zero a = 0 we need to take a combination
of sinhnrty and cosimrty which is zero aty = b: using the addition formula, this will turn out to look like
sinhnm(b—y)/a.

( The cosmx/a terms are not zero on the boundary, but have vanishing deeva.[0® = 9d®/dx at
x = 0 andx = a, so they will fit Neumann boundary conditions which are zerdhwse boundaries. Since we
will stick to Dirichlet problems as examples in this counae, will find we are using only the sine terms not
cos terms in our solutions).

For the other two sides at= 0 andx = a, we just repeat the above interchangig> y anda < b: so
a solution which is non-zero only on siate= a will look like sinnmy/bsinhnrix/b, and a solution which is
non-zero only on the side= 0 will look like sinnmty/bsinhnri(a— x)/b.

From these remarks, we can see that in order to fit generaldasyrconditions, we can solve it if we
break our function on the boundary into a (possibly infingein of sin/cos functionsi.e. a Fourier series.

Now we look at a boundary condition with a general functiorooe side:

Example 7.2. Consider the previous example but with= g(x) on sidey = b for some giverg(x), and
@ = 0 on the other three sides of the rectangle.

We try a linear combination of solutions of the form found ebddkeeping the conditions derived from
the other parts of the boundary):

2 . N7y . Nmx
®(x,y) = Y Dpsinh—=sin—.
nzl a a

Each term on the RHS is automatically a solution of Laplaeqisation and is zero on the other three sides,
so we just need to choose a set of constBits to make this match the giveg{x) along the sidg = b.

Putting iny = b above gives us
hd nrm . nmx
0] =Y Dpsinh—— sin— = .
(x,b) 2 nSinh——sin— 9(x)

n=1

here theD, and the sinh don’t depend orso we can rewrite this as
l N7IX
d(x,b) =Y Ensin— =
(4b) = 3 Ensin—2 9 (+)
with E, = Dy sinh(nmib/a).

Finding the coefficient&n in equation(x) is a standard problem in (arbitrary range) Fourier seriemfr
the previous Chapter. The answer is

2 (@ . N
En:a/o g(x)sm? dx.

Now we just need to evaluate this integral for alland then plug irD, = E,/sinh(nmib/a) back to the
original equation to give us a solution

hd En . NMy . NmX
OXY) = Y —————sinh—2 sin—-.
() nzlslnr(nnb/a) Sinh—=-sin=3

By uniqueness, we have fouttte solution.
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We still have a couple more issues to deal with. So far, we Is@em how to solve the problem as a
Fourier series when the boundary conditions are zero or thices and non-zero on any one side.

If the boundary conditions are non-zero on all four sidesstilitzero at all four corners, we can solve
this just by breaking it into four separate problems, eacwlith has non-zero boundary values on exactly
one side: this gives four solutiods , ®,, ®3, ©4 each solving one different side: then add the four solutions
by linearity of Laplace’s equation.

If the four corners are all one constant value, just subtifsistconstant from the boundary conditions,
solve as above, and add the constant back to the final salution

Finally, we have to deal with the case where the given boyncamditions are different (but still contin-
uous) at the four corners. This can be dealt with by Eq. 7.&abgiven the four values at the corners, it is
straightforward to choose our four constaat$3, y, o to give a solution (call itbg) which matches the given
boundary values at all four corners, by starting with (Bgd) corner, then th€0,a), etc. Next, we subtract
thatdy(x,y) from all the given boundary conditions on the edges to get a new setufdary conditions for
@) + O, + D3+ Dy; solved; to P, by treating the four sides separately as above: and finatlyadidive
solutions®g + ... 4+ @4 to get the answer.

This whole process is quite lengthy, but we have seen how toid@rinciple.

Example 7.3. Consider a rectangle with€ x < 2, 0< y < 1, and boundary values fd¥(x,0) = sinrx
etc. as shown at the left diagram in Figure 7.1.

T 0

sin 7y 2y sin Ty 0

sin rx sinmx

Figure 7.1: Left: boundary conditions @b(x,y). Right: boundary conditions after subtracting & = xy
along the edges.

First we look at the boundary values at the four corners:irgpthese off the diagram we hade= 0 at
three corners an®(2,1) = 2 at the cornefx=2,y = 1).
So, now we solve for the coefficients ®y(x,y) = o + BXx+ yy+ dxy so as to fit the given boundary values
only at the four corners: starting at the origin and working is easiest, so
$y(0,0) =0= o =0,
$p(2,0)=0= =0,
®p(0,1) =0=y=0,
Pp(2,1)=2=06=1,;
therefore

Pp(x,y) =0+0+0+1xy =xy

Now we evaluateby along all four edges: it is zero on the left and bottom eddefs, ®y(2,y) = 2y on
the right edge andy(x,1) = x along the top edge. Subtracting those from the original damnconditions
leaves the new boundary conditions in the right panel of fE&gul: by construction, these are zero at all
corners. We can now mateb(x, 0) along the bottom side using

(1 —y))sinmx

sinh(7t)

ch(Xa y) = Sinr(
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(this is like example 7.1), and matdh(0,y) along the left-hand side with

_ sinh(1(2 — x)) sinrty

®2(%) sinh(2m)

The full solution is
D(X,y) =P+ P14 P, .

Exercise 7.1. Find ®(x,y) in 0 < x < 11, 0 < y < 1, satisfying the following conditions:
?0 =0 in0<x<m 0<y<1,

@® =sinxony=0

and® = 0 on the other three sides of the rectangle. Is the solutidguer? a

7.4  2-D solutions of Laplace’s equation in cylindrical pola coordi-
nates

We now look at cylindrical polar coordinates: this is theurat choice where the boundary conditions are
given on a circle in 2D or a cylinder in 3D. It will turn out a dtmpler than Cartesians, since there are no
corners to worry about on the boundary.

We also change our label for our scalar field frdmo U, to avoid confusion with the angte (of course,
this is just a re-labelling and makes no real difference).

From chapter 5, in cylindrical polar coordinatgs ¢, z), the grad of a scalar field is

T op P pagp”? 97
and the divergence & = Fye, + Fyey + Fo€; is
D.le M+@+M .
P op 0] 0z

Putting these together we obtain

1[0 ou d (10U 0 ou
2 = i —_ | — - R R - -
oy = dv(DU) P Lﬁ) <p0p>+0<p (p dfp>+0z (p 02” ’
which simplifies to
DZU —Ei d_U _|_i62_u+@
~ padp pdp p2o¢? 072

Consider the case when everything in the problem is indegreiaf z, soU = U (p, ¢). Once again we
seek aseparablesolution, this time we will write it as

U(p,9) =R(p)N¢) -
whereR andSare functions to be found. Putting this iff8U, working out and dividing byRSgives

pd ( drR)_-1d'S
Rdp S dg?

P (*)
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Once again, the LHS is a function of ongyand the RHS is a function of onlg, so by the same argument as
before, both sides are some (unknown) constant, call it

Setting the RHS above t, the differential equation fo(¢) is then

d?s

_— )\ =

902 +AS=0,
which we met before: ifA > 0, it has the general solution

S(¢) = Acog VA @) + Bsin(vVA @) .

If A < 0 we would similarly have

S(g) = Acost{v/—A @) + Bsinh(v/ =2 @) .

But, in polar coordinate§(¢p) must be periodic, i.e. the solution must be the same if we aditb 2, since
any pair of valueggy and ¢y + 21T represent the same point in space; the sinh and cosh sduwtitimA < 0
cannot obey this, so are “forbidden” and we discard them. Siin@nd cos solutions will obey this periodic
condition iff v/A is aninteger. Thus, the only allowed values afareA = n? wheremis a positive integer
(without loss of generality) and we can write the solutiondgarticular integem as

S(¢p) = Amcosm@+ Bysinmg .

Now, going back tdR(p) and setting the LHS of (*) equal th = n? gives

d drR
o5 (oG ) ="7R

We guess a power-law solutidth= Cp? for constant<, g; substituting and working through, that simplifies
to 2o
sog = +m. This is two independent solutions fgrand each has its own constant, so we write
R(p) =Cmp™+Dmp ™",
and agairCn, Dy are constants; finally multiplying o@andR, we have a solution fdd of the form
U(p, ) = (Amcosme+ Bysinmg) (Crnp™+ Dmp™™) .

for any integem > 0.

The casel =0 is again a special case: then we integrate twice giRirgCo In p + Do, andS= Agp+ Bo.
In most cases we séf = 0 by requiring uniqueness on adding B ¢; ( but note there are special cases
where it is acceptable fad not to be unique, providedU is unique. This happens in fluid dynamics, for
example, where we are interested in the fluid veloeity OU rather than the potentiél itself. In that case
we require thatJU be single valued, which allows us to usefyterm).

Combining the above, the general solution of Laplace’s #guan cylindrical polars is a linear combi-

nation of all these above for the= 0 case and every positive > 1: each of thesen has its own constants,
so we get

U(p,9) = (Ao@+Bo)(Colnp +Do) + 5 (AmcosM@ + Bmsinmg) (Cmp™+Dmp™ ™). (7.8)
m=1

Note that this form implies that boundary conditions K&, ¢) given on a circle or cylinder of fixeg = R
leads to a Fourier series problemgrn(once the terms iy have been found). However, in many cases we

104



need only a finite number of terms and can use intelligentgek (essentially, including only terms with
thesamevalues ofm which appear in the boundary conditions) to find the requaestcbf constants.

Also, note the presence of both positive and negative posfgr®dn the RHS: if we are solving a problem
inside a circle with boundary condition given on the circle, we wifuire allD, to be zero fom > 1 so that
the solution is bounded at the origin= 0. Alternatively, we can be given boundary conditions onralei
and asked for a solutiooutsidethe circle, requiring the solution to be well-behaved agégy — : then we
must set alCy, to zero form > 1, and use onl,, terms.

Finally, we may be asked to solve Laplace’s equation immmulus between two circles of given radii,
with boundary conditions given on both the inner and outesies; in that case we will need to keep both
Cm andDp, terms, and we'll get a pair of simultaneous equations fohead¢o match the given boundary
conditions on both circles.

Example 7.4. Solve Laplace’s equatidii?U (p, @) = 0 outside the unit circle, with boundary conditions
U (1, @) = 2sir? @ on the unit circle, antl ~ Inp at largep.

First look at the general solution 7.8. That does not cordasir?, but since 2sifigp = 1 — cosp, the
latter form does look like a sum of two terms in 7.8: a cons{@amt= 0) term plus a cos@ term which
looks like anm = 2 term; so we can (correctly) guess that the same is true afdhgion, i.e. we choose all
An...Dnm coefficients withm= 1 andm > 3 to be zero, so the infinite sum becomes just one termnvith2.
We also seB;, = 0 since our boundary condition only contains a cp$dt a sin 2p.

The largep condition impliesAg = 0, and als, = 0 since we don’t want a*2 term at largep.

Writing out 7.8 without all those zeros leaves us with ourtfegted guess” solution as
U = BoDo -+ BoCoIn p + AoD, cog2¢) p 2 .
Again this has several “redundant” constants, and we camgusite it as
U=a+pBInp+ycog2¢)p 2

Finally, matching the given boundary values on the cigle 1 gives usa = 1,y = —1, and the largep
condition gives ug = 1, so the unique solution is

Ccos
U(p,fp):1+lnp——22p-

We can check this easily: it is a particular case of 7.8 soéisdBwlve Laplace’s equation. And it matches the
given boundary conditions gm= 1 and largep; so it is the unique solution.

Exercise 7.2. Consider the regio® defined bya < p <b, 0< ¢ < 11, —0 < Z < 0. Sketch the region in
a plane perpendicular to tlzeaxis which lies inD. On the boundaries = a, ¢ = 0 andg = 11, U = 0 while
on the boundarp = b, U = gsing. Find the solutiotJ of Laplace’s equation iD, independent of, which
satisfies these boundary conditions.

[You may assume thatonQ @ < 1T

5 SN

qosinq)— i L
& TI(4k2 - 1)

a

Note: Finally, it is also worth noting that solutions likg' cogng) can also be expanded as polynomials
in x,y: for example, cogg) = 8cos ¢ —8cog ¢+ 1, andp* = (x> 4 y?)?, therefore a bit of arithmetic leads
to p?cos4p = x* — 6x2y? +y*, and you can use the Cartesian formula to check@Raif that is zero. These
may occasionally be useful, but they rapidly get unmanagdablargen.

105



7.5 Axisymmetric solutions of Laplace’s equation in sphegal polar
coordinates

Now we consider what to do in problems with a naturally sptergeometry. First, we need to work out
what02U is in spherical polar coordinates.

As before, we have

0?U = div(0U).
which is true in any coordinate system. Now in spherical poteordinates,
ou 10U 1 ou
LU =—e+ €+ -——

T T T 50 T rsing 99

and the divergence ¢f = F e + Fgeg + Fyey is

c_ 1 [d(r*sin6F) N d(rsinBFy) N d(rFg)
~ r2sin@ or 20 20 |’

Putting these together we obtain

-t [9(26ne%Y) L 2 (sing®Y) . 9 (L Y
SV =zgng |ar SN0 )+ 38 (5958 ) T30 \sina ag ) |

which simplifies to
9 (209N L 9 (gng9YY 1 i
or or sin@ 90 00 ) st 0¢? |’

Many problems araxisymmetric- that is, there is no dependence on {heoordinate. In such cases
U =U(r,0) andd(anything/d¢@ = 0. As in the previous cases, we proceed by seeksgparablesolution:

U(r,08)=R(r)S(0).

[different meanings from thR andSin the last section]. ThuS2U = 0 becomes
1[0 [/ ,0R 1 0 (. . 0S
2 {W <r W) S+ Sn6 30 <sm6%) R} =0

ii rzﬁ_R —7_1 i Sined_s
Rryar \' ar )~ 6)sin6 96 90 )"

Once again, the left-hand side is a functiom @inly, and the right-hand side is a function®bnly. But they
are equal, and so they must both be some constani .séius

1
r2

U =

which rearranges to

d (,dR B
a(lr a)—/\R_o (7.9)
and 1 d ds

We consider equation (7.10) first. If we defiwe= cosf, then

d_ -1d

dw  sin6de’
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so equation (7.10) can be written in the form

d ds
an ((1—mﬂ)m> +AS=0.

which is called_egendre’s differential equation. We see in the next Section that obkygendre polynomial
solutionsS= P,(w) = P,(cosP) are allowed, i.e. the cases whéere= ¢(¢+ 1) and/ is an integer, ané is
the Legendre polynomial of ordér

Going back to equation (7.9), inserting= ¢(¢ + 1) thenR(r) satisfies

d [ ,dR B
< (r E) — (0 +1)R=0. (7.11)

We try looking for a power-law solutiorR = ArP of this with A, p constant: inserting it we find
p(p+1)ArP = ¢(¢+ 1)ArP

i.e.p(p+1) =/¢(£+1). Givent, this is a quadratic equation fx It has solutionp = ¢ andp = —(¢+1).

Hence the general solution f&r) is

B
_ l
R=Ar +m.

and so the solution fdd is B
¢
uro)= <Ar + m) P;(cosB).
Becausél? is a linear operator, any linear combination of solutional& a solution of Laplace’s equation ,
S0 again the general solution is an infinite sum:

0

Vo= 5 (Anrn+ r§:l> P (cosf). (7.12)

The individual functions on the right aexisymmetric spherical harmonicsand they form a set of axisym-
metric solutions of Laplace’s equation which is complete, {7.12) can be shown to be the most general
axisymmetric solution.

One can match arbitrary boundary conditions to an infiniteeseof Legendre polynomials using their
orthogonality properties (see later). However, in thisrsewe will stick to problems where only a few terms
are needed and we can see what they are by intelligent gudssiive essential rule isnly to put into the
prospective answer those Legendre polynomials which appélae boundary conditions.

Example 7.5. A perfectly spherical conductor, centre 0, radass placed in an otherwise uniform elec-
tric field Eq. (Mathematically, the condition for a conductor is that #iectrostatic potentid) is constant.)
What is the potential everywhere outside the conductor?iAside?

Outside the conductor (> a), we want to solvél?U = 0. The boundary conditions are théat=constant
onr = a and that far from the conductéiU — E.

The unperturbed field (the one before the conductor was gdsied= Egk, choosing the z-axis to align
with the field. Converting this to theis of spherical polars, we have

Eo = Egpcosfe — EgsinfB ey
which is what the field must look like as— : this has potential

Uo = Egr cosf + constant= EgrP;(cos) 4+ constant
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(Note that thids a solution of Laplace’s equation.) Now our potential

U= nZD (AnrnJr rnle) Pa(cosB) — n;Anr”Pn(cose)

asr — oo, But this must equallp = EqrP;(cos6)+const. at large, so we can deduce thAj = Eg, Ag is an
arbitrary constant, ané,, = O for all othern.

Onr =awe wantU to be constant, i.e. it should not vary wiéh Now onr = a

Bo B1 o Bn
U(a,B8)=~A0+ = + <E0a+ ?) Py (cosB) + nZZWPn(COSQ)

The potential om = a will vary with 8 unless all the coefficients &h(cos@) (n > 0) each vanish. Hence we
must haveB; = —Epa® to make the bracket vanish, aBd = 0 (n > 2). Hence finally the solution is

B 3
U(r,e):Ao+TO+Eo (r—?—2> cosb.

Note thatAg andBg are undetermined constants. To deternBp&ve need additional information to ascertain
the potential difference between the surface of the comdwetd a point at infinity. The constaAp will
always be arbitrary, because the absolute value of the paltéas no physical meaning (only its gradient is
actually observable).

Inside, sincdJ is constant on the boundary, it must be constant inside thewaior.

This last point has practical consequences. The voltageadnes[in a static field] satisfies Laplace’s
equation. If you stand under an electricity pylon, thereriather large voltage change—thousands of volts—
between your head and your feet. But if you stand inside a vage (often called a Faraday cage), then
the wire acts like a continuous conductor and equalizes ditage over the cage and hence inside the cage
too. That is why a wire cage provides a refuge from lightni@gges also provide screening from electronic
surveillance, or, by putting equipment inside them, safletyhe people outside.

Exercise 7.3. Show that at a general point the following are solutions gflaae’s equation?U = 0.

1. U =r"cosnB, for an integen, in cylindrical polar coordinates.

2. U =rsinfcosg, in spherical polar coordinates.

7.6 Introduction to Legendre polynomials

We now take a brief look at the Legendre polynomials. Thesedafined as the solutions bégendre’s
differential equation which is
d ((1—x2)ﬁ) +Af=0.

dx dx

or similar, whereA is an arbitrary constant. The solution of this is outside shepe of this course, but
essentially we search for power-law solutions of the form

fx) = apxP
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Then, it can be shown that the series only converges abbeth 1 if A = /(¢ + 1) where/ is an integer, and
we can take as a non-negative integer without loss of generality.

Then, the functiorf (x) which satisfies the above D.E. fdr= £(¢+ 1) is called the_egendre polynomial
of “degree”?, usually writtenP,(x). (It is common to use lettef for this integer, since when things are
extended to 3-Bpherical harmonics lettersn andm are generally used for other functions in thand ¢
coordinates.)

There is an arbitrary multiplicative constant in e&ghwhich is chosen so th&(1) = 1 for all £. It turns
out thatP, is an/-th order polynomial, and involves only even/odd powersvdff ¢ is even/odd.

The solutions can be obtained Bypdrigues’ formula

1 df
P/(X) = ——
1) = 271 4
There is also a recurrence relation between them,

[0 —1)"] (7.13)

Pia(X) 20+ 1) XPy(x) — £Py_1(X)]

“ il
which gives all of them, working upwards froRy andP;.

Starting from Rodrigues’s formula

Px) = 1
Pi(x) = x
then the recurrence relation gives subsequent ones as
R = 3(E32-1)
P = 35839
Pi(x) = %(35x4—30x2+3)
etc

Another important property isrthogonality, i.e. the fact that
1
/ Pn(W)Py(W)ydw = 0 ifm#n
-1

= 2 if m=n
T 2n+1 a

This property enables us to express any general function atfiaite series of Legendre polynomials, by a
device similar to that for calculating Fourier coefficients

In this course we will only look at simple functions, in whichse a general n-th order polynomial can be
rearranged into a sum of the first_egendre polynomials, e.g. suppose we are given a boundaditon
in Laplace’s equation looking liké(w) = w? +w+ 1, (W= cosf) we need to choose a sum of Legendre
polynomials to match this. We neg@/3)P,(w) to match the quadratia® term. Then we needPL(w) to
match the linear term. Finally for the constant, {2¢3)P, has given us a-1/3 constant term, so to match
the 1 we need-(4/3)R, on the right hand side. So in that example,

WH+wWH1= %Pz(w) + 1Py(W) + gPo(w)

and we can now put the right-hand-side into the generalisoldb Laplace’s equation, 7.12 , and choose
suitable constants to match.
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