(1) Consider the curve

$$
C=\left\{(\sin t, t) \in \mathbb{R}^{2} \mid 0<t<2 \pi\right\}
$$

as well as the following parametrisation of C :

$$
\gamma:(0,2 \pi) \rightarrow \mathbb{R}^{2}, \quad \gamma(t)=(\sin t, t) .
$$

(b) [13 marks] Let C also be given the downward (decreasing y -value) orientation, and let \mathbf{F} be the vector field on \mathbb{R}^{2} given by

$$
\mathbf{F}(x, y)=\left(-2, y^{3}\right)
$$

Compute the following curve integral:

$$
\int_{C} \mathrm{~F} \cdot \mathrm{ds}
$$

(sint,t)

If you make me try to figure all this out, then I will be very unhappy with you. :(
(You will lose marks for your answer being gibberish.)

$$
\begin{aligned}
\gamma(t)=(\sin t, t) \\
\left.F(\gamma(t))=\left(-2, t^{3}\right)_{\text {(sin } t, t)}\right)
\end{aligned}
$$

*** Why did you compute this integral using γ ? Why can you do this in the first place? ***

Here, the computations are very well done, but much of the explanations around them are missing. (You will lose a few marks for this.)

Show that you understand more than just number crunching!

γ - injective param. of $C \Rightarrow$ Can use γ to - image of $\gamma=$ all of C. Compute integral
γ generates upward orientation of C (y-component increasing) \Rightarrow opposite to orientation of C.

$$
\begin{aligned}
\Rightarrow \int_{C} F \cdot d s & =-\int_{0}^{2 \pi} F(\gamma(t)) \cdot \gamma^{\prime}(t) \gamma(t) d t \\
& =-\int_{0}^{2 \pi}\left(-2, t^{3}\right) \cdot(\cos t, 1) d t \\
& =-\int_{0}^{2 \pi}\left(-2 \cos t+t^{3}\right) d t \\
& =-\left(-2 \sin t+\frac{1}{4} t^{4}\right)_{0}^{2 \pi} \\
& =-\frac{1}{4}(2 \pi)^{4} \\
& =-4 \pi^{4}
\end{aligned}
$$

This is similar to the previous answer, except it also shows the reasoning for how the curve integral is converted to a calculus integral.

Note that you don't have to write much to have a good answer! You just have to show understanding of every step in the process.

