
MTH5113 (Winter 2022): Problem Sheet 11
Solutions

(1) (Boring computations—but you should know how to do them) Consider the following
vector fields F, G, H on R3, where:

F(x, y, z) = (x, y, z)(x,y,z),
G(x, y, z) = (x2, −2xy, 3xz)(x,y,z),
H(x, y, z) = (x2 + y2 + z2, x4 − y2z2, xyz)(x,y,z).

(a) Compute the divergence of F, G, and H at each point (x, y, z) ∈ R3.

(b) Compute the curl of F, G, and H at each point (x, y, z) ∈ R3.

(a) For F, we have, by the definition of the divergence,

(∇ · F)(x, y, z) = ∂x(x) + ∂y(y) + ∂z(z) = 3.

Similarly, for G, we have

(∇ · G)(x, y, z) = ∂x(x
2) + ∂y(−2xy) + ∂z(3xz)

= 2x− 2x+ 3x

= 3x.

Finally, for H,

(∇ · H)(x, y, z) = ∂x(x
2 + y2 + z2) + ∂y(x

4 − y2z2) + ∂z(xyz)

= 2x− 2yz2 + xy.

(b) For F, we have, by the definition of the curl,

(∇× F)(x, y, z) = (∂y(z) − ∂z(y), ∂z(x) − ∂x(z), ∂x(y) − ∂y(x))(x,y,z)

= (0, 0, 0)(x,y,z).
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Similarly, for G, we have

(∇× G)(x, y, z) = (∂y(3xz) − ∂z(−2xy), ∂z(x
2) − ∂x(3xz), ∂x(−2xy) − ∂y(x

2))(x,y,z)

= (0, −3z, −2y)(x,y,z).

Lastly, the curl of H satisfies

(∇× H)(x, y, z) = (A1(x, y, z), A2(x, y, z), A3(x, y, z))(x,y,z),

where

A1(x, y, z) = ∂y(xyz) − ∂z(x
4 − y2z2) = xz+ 2y2z,

A2(x, y, z) = ∂z(x
2 + y2 + z2) − ∂x(xyz) = 2z− yz,

A3(x, y, z) = ∂x(x
4 − y2z2) − ∂y(x

2 + y2 + z2) = 4x3 − 2y.

As a result, we conclude that

(∇× H)(x, y, z) = (xz+ 2y2z, 2z− yz, 4x3 − 2y)(x,y,z).

(2) (Fun with Green’s theorem) Let C denote the circle

C = {(x, y) ∈ R2 | x2 + y2 = 9},

and let us assign to C the anticlockwise orientation.

(a) Let F be the vector field on R2 defined by

F(x, y) = (x− y, x+ y)(x,y).

Compute the curve integral of F over C directly.

(b) Compute the curve integral from part (a) using Green’s theorem. Check that your
answer here matches the answer you obtained in part (a).

(c) Let G be the vector field on R2 defined by

G(x, y) = (x9999999999999ex + y, x+ y33333333333333e2y)(x,y).
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Compute (using your favourite method) the curve integral of G over C.

(a) To compute the curve integral, we first parametrise C:

γ : (0, 2π) → R2, γ(t) = (3 cos t, 3 sin t).

Note that γ is an injective parametrisation of C, whose image is all of C except for a single
point, and which generates the anticlockwise orientation of C. Thus, we have∫

C

F · ds = +

∫ 2π

0

[F(γ(t)) · γ ′(t)γ(t)]dt.

To compute this integral, we observe that

γ ′(t) = (−3 sin t, 3 cos t),
F(γ(t)) = (3 cos t− 3 sin t, 3 cos t+ 3 sin t)(3 cos t,3 sin t),

F(γ(t)) · γ ′(t)γ(t) = 9 sin2 t+ 9 sin2 t = 9.

As a result, ∫
C

F · ds =
∫ 2π

0

9 dt = 18π.

(b) Let F1 and F2 denote the directional components of F:

F1(x, y) = x− y, F2(x, y) = x+ y, (x, y) ∈ R2.

Note in particular that

∂1F2(x, y) − ∂2F1(x, y) = 1− (−1) = 2.

Thus, by Green’s theorem, we have that∫
C

F · ds =
x
D

[∂1F2(x, y) − ∂2F1(x, y)]dxdy =
x
D

2 dxdy,

where D is the interior of the circle C:

D = {(x, y) ∈ R2 | x2 + y2 < 9}.
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(Note in particular that the anticlockwise orientation of C is the “positive” orientation ob-
tained from Green’s theorem.) Finally, since D is simply the circular disk of radius 3, then∫

C

F · ds = 2 · A(D) = 2 · (π · 32) = 18π.

(c) Let G1 and G2 denote the directional components of G:

G1(x, y) = x9999999999999ex + y, G2(x, y) = x+ y33333333333333e2y.

Note that
∂1G2(x, y) − ∂2G1(x, y) = 1− 1 = 0.

Thus, applying Green’s theorem, and letting D be as in part (b), we have∫
C

G · ds =
x
D

[∂1G2(x, y) − ∂2G1(x, y)]dxdy = 0.

(3) (Fun with Stokes’ theorem) Let S denote the upper half-sphere,

S = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, z > 0}.

In addition, let C denote the boundary of S, i.e. the circle

C = {(x, y, 0) ∈ R3 | x2 + y2 = 1},

and assign to C the (anticlockwise) orientation generated by the parametrisation

γ : R → R3, γ(t) = (cos t, sin t, 0).

(a) Let F be the vector field on R3 given by

F(x, y, z) = (x, y, z)(x,y,z).

Compute directly the curve integral of F over C.

(b) Evaluate the integral from part (a) by applying Stokes’ theorem and computing instead
an appropriate integral over S. Make sure that you obtain the same answer as in (a).

(c) Let G and H be smooth vector fields on R3, and assume that G(p) = H(p) for every
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p ∈ C. Using Stokes’ theorem, show that
x
S

(∇× G) · dA =
x
S

(∇× H) · dA.

(Here, S can be assigned either of its orientations.)

(a) First, note that the function

γ∗ : (0, 2π) → C, γ∗(t) = (cos t, sin t, 0)

is an injective parametrisation of C that covers all of C except for a single point (1, 0, 0).
(Note also that γ∗ generates our given orientation of C.) As a result,∫

C

F · ds = +

∫ 2π

0

[
F(γ∗(t)) · γ ′

∗(t)γ∗(t)

]
dt.

To compute the above, we notice that

F(γ∗(t)) = (cos t, sin t, 0)(cos t, sin t, 0),
γ ′
∗(t) = (− sin t, cos t, 0),

F(γ∗(t)) · γ ′
∗(t)γ∗(t) = 0.

As a result, we obtain our solution,∫
C

F · ds =
∫ 2π

0

0 dt = 0.

(b) We begin by applying Stokes’ theorem to obtain∫
C

F · ds =
x
S

(∇× F) · dA,

where S is assigned the upward-facing orientation (i.e. given by the side of S facing the
positive z-direction). In particular, this orientation of S is associated, via Stokes’ theorem,
to our given orientation of C; see the examples in the final lectures.
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Next, observe that by a direct computation, we have

(∇× F)(x, y, z) = (∂yz− ∂zy, ∂zx− ∂xz, ∂xy− ∂yx)(x,y,z) = (0, 0, 0)(x,y,z).

Since ∇× F vanishes everywhere, it follows that∫
C

F · ds =
x
S

(∇× F) · dA = 0.

(c) Since G and H are assumed to be identical on C, we trivially have∫
C

G · ds =
∫
C

H · ds.

(Here, we can use either orientation of C, whichever matches our choice of orientation for
S.) Thus, applying Stokes’ theorem twice, we obtain

x
S

(∇× G) · dA =

∫
C

G · ds =
∫
C

H · ds =
x
S

(∇× H) · dA.

(4) (Fun with the divergence theorem) Let S2 denote the unit sphere centred at the origin,

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1},

and assign to S2 the outward-facing orientation.

(a) Let F be the vector field on R3 given by

F(x, y, z) = (x, y, z)(x,y,z).

Compute directly the surface integral of F over S2.

(b) Evaluate the integral from part (a) by applying the divergence theorem and computing
an appropriate triple integral. Make sure that you obtain the same answer as in (a).

(c) Let L be the vector field on R3 given by

L(x, y, z) =
(
y543ey

2+z4z5234, ex
562z27−x12z43(x+ zex)127, 1+ x10y+ 24y17e42y

3
)
(x,y,z)

.

Evaluate the surface integral of L over S2.
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(a) To compute this surface integral, we first recall that

ρ∗ : (0, 2π)× (0, π) → S2, ρ∗(u, v) = (cosu sin v, sinu sin v, cos v)

is an injective parametrisation of S2 which covers “almost all” of S2, and that ρ∗ generates
the inward-facing orientation of S2. As a result, we have that

x
S2

F · dA = −
x

(0,2π)×(0,π)

{
F(ρ∗(u, v)) · [∂1ρ∗(u, v)× ∂2ρ∗(u, v)]ρ∗(u,v)

}
dudv

In addition, direct computations (include work from previous weeks) yield

F(ρ∗(u, v)) = ρ∗(u, v)ρ∗(u,v),
∂1ρ∗(u, v)× ∂2ρ(u, v) = − sin v · ρ∗(u, v),

F(ρ∗(u, v)) · [∂1ρ∗(u, v)× ∂2ρ∗(u, v)]ρ∗(u,v) = − sin v.

Thus, combining all the above and applying Fubini’s theorem, we conclude that

x
S2

F · dA = −

∫ 2π

0

∫π

0

(− sin v)dvdu

= 2π

∫π

0

sin v dv

= 4π.

(b) Let W denote the region bounded by S2, namely, the ball of radius 1 centred at the
origin. Moreover, observe that the divergence of F satisfies

(∇ · F)(x, y, z) = ∂xx+ ∂yy+ ∂zz = 3.

Thus, by the divergence theorem, we obtain
x
S2

F · dA =
y
W

(∇ · F)(x, y, z)dxdydz = 3 ·
y
W

dxdydz.

Now, the integral of 1 over W is the volume of the unit ball W, which is simply

4π

3
· 13 = 4π

3
.
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(Remember your pre-university mathematics!) As a result of this, we obtain

x
S2

F · dA = 3 · 4π
3

= 4π.

(c) Note that the divergence of L vanishes everywhere:

(∇ · L)(x, y, z) = ∂x

(
y543ey

2+z4z5234
)
+ ∂y

[
ex

562z27−x12z43(x+ zex)127
]

+ ∂z

(
1+ x10y+ 24y17e42y

3
)

= 0.

Thus, letting W be the region bounded by S2 and using the divergence theorem, we obtain
x
S2

L · dA =
y
W

(∇ · L)(x, y, z)dxdydz =
y
W

0 dxdydz = 0.

(5) (Setting boundaries I)

(a) Describe the boundaries of the following subsets of R2, as one or more curves in R2:

(i) D1 = {(x, y) ∈ R2 | x2 + 4y2 < 4}.

(ii) D2 = (0, 1)× (0, 2).

(iii) D3 = {(x, y) ∈ R2 | x < 1, y > 0, y < x}.

(b) Describe the boundaries of the following surfaces in R3, as one or more curves in R3:

(i) S1 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1, x > 0}.

(ii) S2 = {(x, y, z) ∈ R3 | x2 + y2 = 1, − 1 < z < 1}.

(iii) S3 = {(x, y, 0) ∈ R3 | x ∈ (0, 1), y ∈ (0, 2)}.

(c) Describe the boundaries of the following regions in R3, as one or more surfaces in R3:

(i) V1 = {(x, y, z) ∈ R3 | x2 + y2 + z2 < 9}.

(ii) V2 = (0, 1)× (0, 1)× (0, 1).

(iii) V3 = {(x, y, z) ∈ R3 | x2 + y2 < 1, − 1 < z < 1}.

(a) Plots of D1, D2, D3, and their boundaries are given below:
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(i) Since D1 is the inside of the ellipse x2 + 4y2 = 4, its boundary is simply the ellipse itself:

C1 = {(x, y) ∈ R2 | x2 + 4y2 = 4}.

(ii) Here, D2 is a rectangular region. Its boundary consists of the 4 sides of the rectangle,
which can be expressed as 4 separate curves (or more specifically, line segments):

C2,1 = {(1, y) | 0 < y < 2}, C2,2 = {(x, 2) | 0 < x < 1},
C2,3 = {(0, y) | 0 < y < 2}, C2,4 = {(x, 0) | 0 < x < 1}.

(iii) Observe that D3 is the triangle that bounded by the x-axis, the vertical line x = 1, and
the diagonal line y = x. Thus, its boundary is simply the sides of this triangle:

C3,1 = {(x, 0) | 0 < x < 1}, C3,2 = {(1, y) | 0 < y < 1}, C3,3 = {(x, x) | 0 < x < 1}.

(b) Plots of S1, S2, S3, and their boundaries are given below:
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(i) Note that S1 is the “right half” of the unit sphere S2 centred at the origin. Thus, its
boundary is the unit circle that is the intersection of S2 and the yz-plane:

C1 = {(0, y, z) ∈ R3 | y2 + z2 = 1}.

(ii) Observe that S2 is the segment of the usual cylinder (centred about the z-axis) lying
within the range −1 < z < 1. Thus, the boundary of S2 consists of the cross-sections of the
cylinder at z = 1 and z = −1, i.e. two separate circles:

C2,1 = {(x, y, 1) | x2 + y2 = 1}, C2,2 = {(x, y, 1) | x2 + y2 = 1}.

(iii) Here, S3 is simply a rectangle lying on the xy-plane (in fact, the same rectangle as in
part (a.ii)). Thus, the boundary of S3 consists of the 4 sides of the rectangle:

C3,1 = {(1, y, 0) | 0 < y < 2}, C3,2 = {(x, 2, 0) | 0 < x < 1},
C3,3 = {(0, y, 0) | 0 < y < 2}, C3,4 = {(x, 0, 0) | 0 < x < 1}.

(c) The boundaries of V1, V2, V3 are illustrated below (the regions V1, V2, V3 themselves are
are simply the volumes enclosed by the drawn surfaces):
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(i) Since V1 is the inside of the sphere x2 + y2 + z2 = 9, its boundary is the sphere itself:

S1 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 9}.
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(ii) V2 is a unit cube. Thus, the boundary of V2 is given by the 6 faces of this cube:

S2,1 = {(x, y, 0) ∈ R3 | x, y ∈ (0, 1)}, S2,2 = {(x, y, 1) ∈ R3 | x, y ∈ (0, 1)},
S2,3 = {(x, 0, z) ∈ R3 | x, z ∈ (0, 1)}, S2,4 = {(x, 1, z) ∈ R3 | x, z ∈ (0, 1)},
S2,5 = {(0, y, z) ∈ R3 | y, z ∈ (0, 1)}, S2,6 = {(1, y, z) ∈ R3 | y, z ∈ (0, 1)}.

(iii) V3 is the interior of the usual cylinder (of radius 1, centred about the z-axis), restricted
to the range −1 < z < 1. Thus, its boundary consists of the segment of cylinder satisfying
−1 < z < 1, as well as the disks forming top and bottom “lids” of V3:

S3,1 = {(x, y, z) ∈ R3 | x2 + y2 = 1, − 1 < z < 1},
S3,2 = {(x, y, 1) ∈ R3 | x2 + y2 < 1},
S3,3 = {(x, y,−1) ∈ R3 | x2 + y2 < 1}.

(6) (Setting boundaries II)

(a) Suppose you apply Green’s theorem to each of the regions Di in Question (5a). De-
scribe the resulting orientation(s) on the boundary of each Di that you would obtain,
according to the statement of Green’s theorem.

(b) Suppose you apply Stokes’ theorem to each of the surfaces Si in Question (5b), where:

– For S1, we use the orientation facing the positive x-direction.

– For S2, we use the outward-facing orientation.

– For S3, we use the orientation facing the positive z-direction.

Describe the resulting orientation(s) on the boundary of each Si that you would obtain,
according to the statement of Stokes’ theorem.

(c) Suppose you apply the divergence theorem to each of the regions Vi in Question (5c).
Describe the resulting orientation(s) on the boundary of each Vi that you would obtain,
according to the statement of the divergence theorem.

(a) Here, we use the notations from the solution of Question (5a) for our boundaries. First,
illustrations of all the orientations are drawn below:
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(i) For C1, we take the anticlockwise orientation.

(ii) We traverse around D2 in the anticlockwise direction. More specifically:

• We take the upward orientation on C2,1.

• We take the left orientation on C2,2.

• We take the downward orientation on C2,3.

• We take the rightward orientation on C2,4.

(ii) We traverse around D3 in the anticlockwise direction. More specifically:

• We take the rightward orientation on C3,1.

• We take the upward orientation on C3,2.

• We take the downward-leftward orientation on C3,3.

(b) Here, we use the notations from the solution of Question (5b) for our boundaries. All the
orientations are illustrated below (the orientations of S1, S2, S3 are given as orange arrows):
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(i) The boundary curve C1 has the anticlockwise orientation on the yz-plane, as viewed from
someone standing “to the right” (higher value of x) of the half-sphere.

(ii) The orientations of the boundary pieces C2,1 and C2,2 are assigned separately:

• C2,1 has the clockwise orientation with respect to the xy-plane (i.e. one starts from
(x, y) = (1, 0) and goes into the fourth quadrant x > 0 and y < 0).

• C2,2 has the anticlockwise orientation with respect to the xy-plane (i.e. one starts from
(x, y) = (1, 0) and goes into the first quadrant x > 0 and y > 0).

(iii) Here, one goes anticlockwise about the square S3, when one views S3 “from the top”
(i.e. from a higher value of z). More specifically:

• C3,1 goes in the positive y-direction.

• C3,2 goes in the negative x-direction.

• C3,3 goes in the negative y-direction.

• C3,4 goes in the positive x-direction.

(c) Here, we use the notations from the solution of Question (5c) for our boundaries. Again,
all of the orientations are illustrated below as orange arrows:
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(i) For S1, we simply obtain the outward-facing orientation.

(ii) Each of the boundary pieces is given the outward orientation. More specifically:

• On S2,1, we take the unit normals in the negative z-direction.
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• On S2,2, we take the unit normals in the positive z-direction.

• On S2,3, we take the unit normals in the negative y-direction.

• On S2,4, we take the unit normals in the positive y-direction.

• On S2,5, we take the unit normals in the negative x-direction.

• On S2,6, we take the unit normals in the positive x-direction.

(iii) Each of the boundary pieces is given the outward orientation. More specifically:

• On S3,1, we take the unit normals in the outward-facing direction.

• On S3,2, we take the unit normals in the positive z-direction.

• On S3,3, we take the unit normals in the negative z-direction.

(7) (Second derivative identities)

(a) Let f : R3 → R be a smooth function. Show that the curl of the gradient of f vanishes
everywhere, that is, show that for any p ∈ R3,

[∇× (∇f)](p) = (0, 0, 0)p.

(b) Let F be a smooth vector field on R3. Show that the divergence of the curl of F vanishes
everywhere, that is, show that for any p ∈ R3,

[∇ · (∇× F)](p) = 0.

(a) Recall that the gradient of f is given by

∇f(p) = (∂1f(p), ∂2f(p), ∂3f(p))p.

Thus, by the definition of the curl, we obtain

[∇× (∇f)](p) = (∂2∂3f(p) − ∂3∂2f(p), ∂3∂1f(p) − ∂1∂3f(p), ∂1∂2f(p) − ∂2∂1f(p))p

= (0, 0, 0)p,
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since the order that one takes partial derivatives of a function does not matter.

(b) Let us write F in terms of its components as

F(p) = (F1(p), F2(p), F3(p))p.

Recall that the curl of F is given by

(∇× F)(p) = (∂2F3(p) − ∂3F2(p), ∂3F1(p) − ∂1F3(p), ∂1F2(p) − ∂2F1(p))p.

Then, by the definition of the divergence, we have that

[∇ · (∇× F)](p) = ∂1(∂2F3 − ∂3F2)(p) + ∂2(∂3F1 − ∂1F3)(p) + ∂3(∂1F2 − ∂2F1)(p)

= ∂1∂2F3(p) − ∂1∂3F2(p) + ∂2∂3F1(p) − ∂2∂1F3(p)

+ ∂3∂1F2(p) − ∂3∂2F1(p)

= 0,

(Again, the order that one applies partial derivatives does not matter.)

(8) (Connections to Complex Variables) (Not examinable) Consider the plane R2, or equiv-
alently, the complex plane C. Let C denote the unit circle centred at the origin,

C = {(x, y) ∈ R2 | x2 + y2 = 1} ≃ {z ∈ C | |z| = 1},

and assign to C the anticlockwise parametrisation. Furthermore, let f : C → C be a complex-
analytic function, and write f in terms of its components as

f(z) = u(z) + i · v(z), z ∈ C.

(a) Express the real and imaginary parts of the contour integral of f over C,

Re
∫
C

f(z)dz, Im
∫
C

f(z)dz,

as curve integrals of appropriate vector fields over C.

(b) Use Green’s theorem to prove Cauchy’s theorem on C:∫
C

f(z)dz = 0.
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(Hint: Recall that u and v satisfy the Cauchy-Riemann equations.)

(a) To parametrise C for our contour and curve integrals, we can take

γ : (0, 2π) → R2, γ(t) = (x(t), y(t)) = (cos t, sin t),

or, in terms of complex numbers,

γ(t) = x(t) + i · y(t) = eit.

In particular, we can expand∫
C

f(z)dz =

∫ 2π

0

f(γ(t))γ ′(t)dt

=

∫ 2π

0

[u(γ(t)) + i · v(γ(t))][x ′(t) + i · y ′(t)]dt

=

∫ 2π

0

[u(γ(t)) x ′(t) − v(γ(t))y ′(t)]dt

+ i

∫ 2π

0

[u(γ(t))y ′(t) + v(γ(t)) x ′(t)]dt.

Note that the two integrals on the right-hand side are now real-valued.

Define now the vector fields R and I on R2 by

R(x, y) = (u(x, y), −v(x, y))(x,y), I(x, y) = (v(x, y), u(x, y))(x,y).

Then, combining the above and recalling the definition of curve integrals, we see that

Re
∫
C

f(z)dz =

∫ 2π

0

[(u(γ(t)), −v(γ(t))) · γ ′(t)]dt =

∫
C

R · ds,

Im
∫
C

f(z)dz =

∫ 2π

0

[(v(γ(t)), u(γ(t))) · γ ′(t)]dt =

∫
C

I · ds.

(b) Let D denote the interior of C:

D = {(x, y) ∈ R2 | x2 + y2 < 1}.
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Then, recalling the results of part (a) and applying Green’s theorem, we see that

Re
∫
C

f(z)dz =

∫
C

R · ds = −
x
D

[∂1v(x, y) + ∂2u(x, y)]dxdy,

Im
∫
C

f(z)dz =

∫
C

I · ds =
x
D

[∂1u(x, y) − ∂2v(x, y)]dxdy.

Now, since f is analytic, its components satisfy the Cauchy-Riemann equations:

∂1u(x, y) − ∂2v(x, y) = 0, ∂1v(x, y) + ∂2u(x, y) = 0.

Combining all the above, we conclude that

Re
∫
C

f(z)dz = Im
∫
C

f(z)dz = 0,
∫
C

f(z)dz = 0.

(9) (Green’s theorem fail) Let C be as in Question (8), and let F be the vector field

F(x, y) =
(
−

y

x2 + y2
,

x

x2 + y2

)
(x,y)

, (x, y) ∈ R2 \ {(0, 0)}.

(a) Show that for any (x, y) ∈ R2 \ {(0, 0)},

∂x

(
x

x2 + y2

)
− ∂y

(
−

y

x2 + y2

)
= 0.

(b) On the other hand, show that the integral of F over C is not zero. Why does this
not contradict the statement of Green’s theorem? (More specifically, why do Green’s
theorem and part (a) not imply that the integral of F over C is zero?)

(c) (Not examinable) For those taking Complex Variables, can you relate what you saw
in parts (a) and (b) to some contour integrals that you have seen?

(a) This is a direct computation using the quotient rule:

∂x

(
x

x2 + y2

)
− ∂y

(
−

y

x2 + y2

)
=

(x2 + y2) · 1− 2x · x
(x2 + y2)2

+
(x2 + y2) · 1− 2y · y

(x2 + y2)2

=
−x2 + y2

(x2 + y2)2
+

x2 − y2

(x2 + y2)2

= 0.
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(b) Let γ be as in the solution of Question (8a). Then, a direct computation yields∫
C

F · ds =
∫ 2π

0

[
F(γ(t)) · γ ′(t)γ(t)

]
dt

=

∫ 2π

0

[(
−

sin t

cos2 t+ sin2 t
,

cos t
cos2 t+ sin2 t

)
· (− sin t, cos t)

]
dt

=

∫ 2π

0

1 dt.

As a result, we see that ∫
C

F · ds = 2π ̸= 0.

This does not contradict Green’s theorem, because the vector field F fails to be well-defined
and smooth in all of the interior of C (in particular, F does not exist at (x, y) = (0, 0)). This
is one of the assumptions required for Green’s theorem to be applicable.

(c) An equivalent phenomenon in complex variables is the contour integral of the function
f(z) = 1

z
over the unit circle, which is also nonzero. Note that f is clearly analytic, but it

fails to be defined at the origin, so Cauchy’s theorem does not apply here.
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