
MTH5113 (Winter 2022): Problem Sheet 10
Solutions

(1) (Warm-up) Consider the following constrained optimisation problem:

• Maximise the function f(x, y) = x, subject to the constraint x2 + y2 = 1.

(a) Give the solution to the above problem without doing any calculations. (The answer
should be obvious from inspection alone; draw a picture if you are not sure.)

(b) Solve the above problem using the method of Lagrange multipliers. Verify that your
solution matches what you deduced in part (a).

(a) Here, we are simply asked what is the largest possible x-coordinate on the unit circle
x2 + y2 = 1 centred at the origin. Of course, this is achieved at the rightmost point (1, 0),
so the maximum value of f(x, y) = x is just +1.

(b) First, observe that the constraint curve x2 + y2 = 1 is a circle, which is both closed and
bounded. As a result, we know that the desired maximum of f does indeed exist.

We now apply the method of Lagrange multipliers. Consider the functions

f : R2 → R, f(x, y) = x,
g : R2 → R, g(x, y) = x2 + y2.

Note that the gradients of f and g satisfy

∇f(x, y) = (1, 0)(x,y), ∇g(x, y) = (2x, 2y)(x,y).

As a result, we must solve the system

1 = λ · 2x, 0 = λ · 2y, x2 + y2 = 1,

for the unknowns x, y, λ ∈ R.

First, note that the equation 1 = 2λx implies that λ ̸= 0. Combining this with the second
equation 2λy = 0 then yields y = 0. Putting this into the constraint equation, we conclude
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that x2 = 1, and hence x = ±1. Since we have x, we can also now use the first equation
1 = λ · 2x to solve for λ. From this, we conclude that the solutions to the system are

(x, y, λ) =

(
+1, 0, +

1

2

)
, (x, y, λ) =

(
−1, 0, −

1

2

)
.

In particular, the maximum of x could only be achieved at the points (x, y) = (±1, 0).

We can now check both points and compare:

f(+1, 0) = +1, f(−1, 0) = −1.

Thus, we see that the maximum of value of f, subject to the constraint x2 + y2 = 1, is +1,
and that this maximum is achieved at (x, y) = (+1, 0).

(2) (Warm-up) Consider the following constrained optimisation problem:

• Minimise the function f(x, y, z) = z, subject to the constraint x2 + y2 + z2 = 1.

(a) Give the solution to the above problem without doing any calculations. (The answer
should be obvious from inspection alone; draw a picture if you are not sure.)

(b) Solve the above problem using the method of Lagrange multipliers. Verify that your
solution matches what you deduced in part (a).

(a) Here, the goal is to find the smallest z-value on the unit sphere x2 + y2 + z2 = 1 centred
at the origin. This is achieved at the south pole (0, 0,−1), with minimum value −1.

(b) First, the constraint surface x2 + y2 + z2 = 1 is a sphere, which is both closed and
bounded. As a result, our desired minimum of f is guaranteed to exist.

To apply the method of Lagrange multipliers, we consider the functions

f : R3 → R, f(x, y, z) = z,
g : R3 → R, g(x, y, z) = x2 + y2 + z2.

Note that the gradients of f and g satisfy

∇f(x, y) = (0, 0, 1)(x,y,z), ∇g(x, y) = (2x, 2y, 2z)(x,y,z).
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Thus, our goal is to solve the following system for the unknowns x, y, z, λ ∈ R:

0 = λ · 2x, 0 = λ · 2y, 1 = λ · 2z, x2 + y2 + z2 = 1.

First, the equation 1 = 2λz implies λ ̸= 0. Combining this with the first two equations yields
x = y = 0. Putting this into the constraint equation, we see that z2 = 1, and thus z = ±1.
From all the above, we conclude that the solutions to the above system are

(x, y, z, λ) =

(
0, 0, +1, +

1

2

)
, (x, y, z, λ) =

(
0, 0, −1, −

1

2

)
.

Finally, we check the vales of f at the above-mentioned points:

f(0, 0,+1) = +1, f(0, 0,−1) = −1.

Thus, we conclude that f is minimised at (0, 0,−1), with minimum value −1.

(3) [Marked] Solve the following problem using the method of Lagrange multipliers:

• Find the maximum and minimum values of x−y3, subject to the constraint x2+9y2 = 9.
At which points are the maximum and minimum values achieved?

First, note that the constraint curve

C = {(x, y) ∈ R2 | x2 + 9y2 = 9}

is an ellipse, and hence is closed and bounded. As a result, the maximum and minimum
values of x− y3 are guaranteed to exist on C. [1 mark for this observation]

We now apply the method of Lagrange multipliers. First, we define

f : R2 → R, f(x, y) = x− y3,
g : R2 → R, g(x, y) = x2 + 9y2.

Note that the gradients of f and g satisfy

∇f(x, y) = (1, −3y2)(x,y), ∇g(x, y) = (2x, 18y)(x,y).
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Thus, our goal is to solve the following system for x, y, λ ∈ R:

1 = λ · 2x, − 3y2 = λ · 18y, x2 + 9y2 = 9.

[1 mark for correct system of equations]

Observe that the first equation 1 = 2λx implies both x ̸= 0 and λ ̸= 0. On the other hand,
as we will need to divide by y, we split into two cases:

• If y = 0, then the second equation is trivially satisfied, and the third equation yields
x2 = 9, and hence x = ±3. Plugging this into the first equation, we see that

λ =

+ 1
6

x = +3,

− 1
6

x = −3.

As a result, we obtain two solutions of our system of equations:

(x, y, λ) =

(
+3, 0,+

1

6

)
,

(
−3, 0,−

1

6

)
.

• If y ̸= 0, then we can divide the second equation by y. Moreover, notice that the first
and second equations combined yield the relations

1

2x
= λ = −

y

6
, x = −

3

y
.

Plugging this into the third equation then yields

9y−2 + 9y2 = 9, y−2 + y2 = 1.

Multiplying this by y2 results in the quadratic equation

(y2)2 − y2 + 1 = 0,

which, by the quadratic formula, has only complex solutions:

y2 =
1±

√
(−1)2 − 4 · 1 · 1

2 · 1
=

1±
√
−3

2
.

In particular, there are no real values of y ̸= 0 for which our system has any solutions.
Thus, the case y ̸= 0 yields no solutions (x, y, λ) to our system.

4



Combining both cases above, we see that there are two solutions to our system, corresponding
to the two points where the extrema of f may lie:

(x, y) = (+3, 0), (−3, 0).

[2 mark for solving system mostly correctly]

It remains to compute the values of f at these solution points:

f(+3, 0) = +3, f(−3, 0) = −3.

Since the maximum and minimum values are guaranteed to exist, we obtain the following
solutions to our constrained optimisation problem:

• The maximum value is +3, and this is achieved at (+3, 0).

• The minimum value is −3, and this is achieved at (−3, 0).

[1 mark for mostly correct answer]

(4) (Differential Geometry and Game Theory) Let x2 be the number of hours of MTH5113
lectures and tutorials you attend, and let y2 be the number of hours of MTH5113 lectures
and tutorials you skip. As you know, the constraint is that there are only 43 total hours of
lectures and tutorials in MTH5113. Now, suppose that the “effectiveness” of your learning
in MTH5113, as a function of the above hours spent, is modelled by the relation

E = 100x2 + y2.

(Here, a higher value of E means better learning!) Your objective here is to optimise the
“effectiveness” of your learning experience in MTH5113!

(a) Express the above objective as a constrained optimisation problem.

(b) Use the method of Lagrange multipliers to solve the problem in part (a).

(c) Given your answer in (b), what optimal strategy should you adopt in order to have
the most effective learning experience in MTH5113? :)

(a) Consider the functions

E : R2 → R, E(x, y) = 100x2 + y2,
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g : R2 → R, g(x, y) = x2 + y2.

The problem, then, is to maximise E(x, y), subject to the constraint g(x, y) = 43.

(b) First, since the constraint curve x2 + y2 = 43 is a circle, which is closed and bounded,
we know that a maximum value of E is indeed achieved. Thus, we apply the method of
Lagrange multipliers to find this maximum. For this, we take the gradients of E and g,
which indicates that we must following solve the system of equations:

200x = 2λx, 2y = 2λy, x2 + y2 = 43.

Suppose first that both x and y are nonzero. Then, the first two equations imply

100 =
200x

2x
= λ =

2y

2y
= 1,

which is a contradiction. Thus, either x = 0 or y = 0. Now:

• If x = 0, then the constraint equation yields y = ±
√
43. (Note that the first two

equations in the system imply λ = 1 but do not further restrict y.)

• If y = 0, then the constraint equation yields x = ±
√
43. (Note that the first two

equations in the system imply λ = 100 but do not further restrict x.)

Thus, the solutions to our system are given by

(x, y, λ) =
(
±
√
43, 0, 100

)
, (x, y) =

(
0, ±

√
43, 1

)
.

It remains to check which solution maximises “effectiveness”:

E
(
±
√
43, 0

)
= 4300, E

(
0, ±

√
43
)
= 43.

Thus, the maximum “effectiveness” is 4300, which is achieved at (x2, y2) = (43, 0).

(c) The results in part (b) show that the maximum “effectiveness” is achieved when x2 = 43

hours are spent in lectures and tutorials, and y2 = 0 hours are spent skipping lectures and
tutorials. Thus, the optimal strategy is to attend all the lectures and tutorials!

(5) [Tutorial] Use the method of Lagrange multipliers to solve the following:
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(a) Find the minimum and maximum of 4x2 − y2, subject to the constraint x2 + 4y2 = 4.

(b) Find the unit vectors (x, y, z) ∈ R3 that maximise and minimise the dot product,

(6,−3, 2) · (x, y, z).

(a) First, the constraint curve x2+4y2 = 4 is an ellipse, which is closed and bounded, hence
both the maximum and minimum in our problem exist.

To apply the method of Lagrange multipliers, we consider the functions

f : R2 → R, f(x, y) = 4x2 − y2,
g : R2 → R, g(x, y) = x2 + 4y2.

Taking gradients of f and g, we see that we must solve the system

8x = 2λx, − 2y = 8λy, x2 + 4y2 = 4.

We break this analysis into cases:

• If x = 0, then the constraint implies y = ±1; this yields (x, y, λ) = (0,±1,− 1
4
).

• If y = 0, then the constraint implies x = ±2; this yields (x, y, λ) = (±2, 0, 4).

• If x ̸= 0 and y ̸= 0, then the first two equations yield

4 =
8x

2x
= λ =

−2y

8y
= −

1

4
,

which is a contradiction.

As a result, the solutions of the above system are

(x, y, λ) =

(
0,±1,−

1

4

)
, (x, y) = (±2, 0, 4).

Finally, plugging each of the above into f, we see that

f(0,±1) = −1, f(±2, 0) = 16.
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Thus, the maximum value is 16, and the minimum value is −1.

(b) First, we reformulate the question as a constrained optimisation problem. In particular,
our objective is to maximise and minimise

f(x, y, z) = (6,−3, 2) · (x, y, z) = 6x− 3y+ 2z,

subject to the constraint (i.e. that (x, y, z) is a unit vector)

g(x, y, z) = x2 + y2 + z2 = 1.

In particular, the constraint surface is the unit sphere, which is closed and bounded, hence
our desired maximum and minimum values are guaranteed to exist.

By the method of Lagrange multipliers, we must solve the system

6 = 2λx, − 3 = 2λy, 2 = 2λz, x2 + y2 + z2 = 1.

For this, we first deduce the following:

• If x = 0, then the first equation implies 6 = 0, a contradiction.

• If y = 0, then the second equation implies −3 = 0, a contradiction.

• If z = 0, then the third equation implies 2 = 0, a contradiction.

Thus, we conclude that x ̸= 0, y ̸= 0, and z ̸= 0. The first three equations then imply

λ =
3

x
=

−3

2y
=

1

z
⇒ x = 3z, y = −

3

2
· z.

Plugging this into the constraint equation yields

1 = (3z)2 +

(
−
3

2
· z
)2

+ z2 =
49

4
· z2 ⇒ z = ±2

7
.

Since x = 3z, y = − 3
2
z, and λ = 1

z
, we see that the solutions to the system are

(x, y, z, λ) =

(
+
6

7
, −

3

7
, +

2

7
, +

7

2

)
, (x, y, z, λ) =

(
−
6

7
, +

3

7
, −

2

7
,−

7

2

)
.
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Finally, we check the dot products:

f

(
+
6

7
, −

3

7
, +

2

7

)
= (6, −3, 2) ·

(
+
6

7
, −

3

7
, +

2

7

)
= +7,

f

(
−
6

7
, +

3

7
, −

2

7

)
= (6, −3, 2) ·

(
−
6

7
, +

3

7
, −

2

7

)
= −7.

Thus, the given dot product is maximised by the unit vector

(xmax, ymax, zmax) =

(
+
6

7
, −

3

7
, +

2

7

)
,

while this dot product is minimised by the unit vector

(xmin, ymin, zmin) =

(
−
6

7
, +

3

7
, −

2

7

)
.

(6) (Conservative and liberal vector fields)

(a) Let f be the real-valued function

f : R3 → R, f(x, y, z) = x4y2z.

Compute the integral of the vector field ∇f over the curve

C = {(t, t2, t3) ∈ R2 | t ∈ (0, 1)},

where C is given the rightward (i.e. in the direction of increasing x-value) orientation.

(b) Let g : R2 → R be given by the formula

g(x, y) = x17ey+x2y5 cos x7 + y4 + ex
2+y2+x42+y1776eyx

2

.

Find the integral of the vector field ∇g over the unit circle

C = {(x, y) ∈ R2 | x2 + y2 = 1},

where C is given the anticlockwise orientation.

(c) Integrate the vector field

H(x, y) = (−y, x), (x, y) ∈ R2,
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over the unit circle C from part (b), where C again has the anticlockwise orientation.

(d) From your answer in part (c), conclude that the vector field H cannot be the gradient
of any real-valued function h : R2 → R.

(a) Note C is a bounded, oriented curve, with initial point (0, 0, 0) and final point (1, 1, 1).
Thus, by the fundamental theorem of calculus (generalised to curve integrals), we have∫

C

∇f · ds = f(1, 1, 1) − f(0, 0, 0) = 1− 0 = 1.

(b) Note that we can remove a single point from C without altering the values of any integrals
over C. With this point removed, the circle then becomes a bounded, oriented curve with a
common initial and final point p. As a result,∫

C

∇g · ds = g(p) − g(p) = 0.

(c) The only thing that can be done is to compute this integral directly. Note that

γ : (0, 2π) → C, γ(t) = (cos t, sin t)

is an injective parametrisation of C whose image is “almost all” of C, and that γ generates
our given anticlockwise orientation of C. Furthermore, note that

H(γ(t)) · γ ′(t)γ(t) = (− sin t, cos t) · (− sin t, cos t) = 1.

As a result, we conclude that∫
C

H · ds = +

∫ 2π

0

[H(γ(t)) · γ ′(t)γ(t)]dt =

∫ 2π

0

dt = 2π.

(d) If H = ∇h for some h : R2 → R, then the same argument as in part (b), using the
fundamental theorem of calculus, would imply that∫

C
H · ds = 0,

which would contradict our result in (c). Thus, H is not a gradient.
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(7) (Lagrangian Formulation of Multipliers) Let f : R2 → R and g : R2 → R be smooth
functions, and fix c ∈ R. Show that the following conditions are equivalent:

(i) (x, y) ∈ R2 and λ ∈ R satisfy the following system of equations:

∇f(x, y) = λ · ∇g(x, y), g(x, y) = c.

(ii) (x, y, λ) ∈ R3 satisfies the equation

∇L(x, y, λ) = (0, 0, 0)(x,y,λ),

where the function L, called the Lagrangian, is defined by

L : R3 → R, L(u, v,w) = f(u, v) −w[g(u, v) − c].

(Thus, the method of Lagrange multipliers could also be formulated in terms of L in (ii)—if
the maximum or minimum of f, subject to the constraint g, is achieved at (x, y), then there
is some λ ∈ R such that (x, y, λ) is a critical point of the Lagrangian L.)

We begin by differentiating L:

∂1L(u, v,w) = ∂u{f(u, v) −w[g(u, v) − c]} = ∂1f(u, v) −w · ∂1g(u, v),
∂2L(u, v,w) = ∂v{f(u, v) −w[g(u, v) − c]} = ∂2f(u, v) −w · ∂2g(u, v),
∂3L(u, v,w) = ∂w{f(u, v) −w[g(u, v) − c]} = −g(u, v) + c.

As a result,

∇L(u, v,w) = (∂1f(u, v) −w∂1g(u, v), ∂2f(u, v) −w∂2g(u, v), −g(u, v) + c)(u,v,w).

Consequently, ∇L(x, y, λ) vanishes if and only if

∂1f(x, y) − λ · ∂1g(x, y) = 0, ∂2f(x, y) − λ · ∂2g(x, y) = 0, − g(x, y) + c = 0.

Similarly, note that (x, y) and λ satisfy the system in (i) if and only if

∂1f(x, y) = λ · ∂1g(x, y), ∂2f(x, y) = λ · ∂2g(x, y), g(x, y) = c.

(In particular, we used the definitions of the gradients of f and g.) Clearly, the two systems
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of equations derived above are the same, hence it follows that (i) and (ii) are equivalent.

(8) (Multiple Constraints) Assume the following formal setting:

• Let U ⊆ R3 be open and connected.

• Let f : U → R, g : U → R, h : U → R be smooth functions.

• Suppose ∇g(p)×∇h(p) is nonvanishing at every p ∈ U.

Under the above assumptions, the following result holds:

• Theorem. Suppose f achieves its maximum or minimum value on

C = {(x, y, z) ∈ U | g(x, y, z) = c, h(x, y, z) = d}

at a point p ∈ C. Then, there exist λ, µ ∈ R such that

∇f(p) = λ · ∇g(p) + µ · ∇h(p).

Using the preceding theorem:

(a) Devise a corresponding method of Lagrange multipliers for solving the following con-
straint optimisation problem: maximise or minimise f(x, y, z), subject to the simulta-
neous constraints g(x, y, z) = c and h(x, y, z) = d.

(b) Using your strategy from part (a), find the maximum and minimum values of x+y+z,
subject to the simultaneous constraints x2 + y2 = 1 and x− z = 1.

(a) Here, the main idea is that we only need to check the points p ∈ C satisfying

∇f(p) = λ · ∇g(p) + µ · ∇h(p).

Thus, the corresponding method of Lagrange multipliers is as follows:

• Step 1: Solve the following system of equations,

∂1f(x, y, z) = λ · ∂1g(x, y, z) + µ · ∂1h(x, y, z),
∂2f(x, y, z) = λ · ∂2g(x, y, z) + µ · ∂2h(x, y, z),
∂3f(x, y, z) = λ · ∂3g(x, y, z) + µ · ∂3h(x, y, z),
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g(x, y, z) = c,
h(x, y, z) = d,

for the unknowns (x, y, z, λ, µ) ∈ R5.

• Step 2: Compute f(x, y, z) for each solution (x, y, z, λ, µ) obtained from step 1. Check
which (if any) of the f(x, y, z)’s is a maximum and/or a minimum.

(b) First, note that the constraint curve

C = {(x, y, z) ∈ R3 | x2 + y2 = 1, x− z = 1}

is a slanted cross-section of the unit cylinder about the z-axis; this has the shape of an ellipse,
which is closed and bounded. Consequently, the desired maximum and minimum values of
x+ y+ z on this curve C are guaranteed to exist.

In terms of the notations in the question statement, we have

f(x, y, z) = x+ y+ z, g(x, y, z) = x2 + y2, h(x, y, z) = x− z.

Taking partial derivatives, we obtain

∂1f(x, y, z) = 1, ∂1g(x, y, z) = 2x, ∂1h(x, y, z) = 1,
∂2f(x, y, z) = 1, ∂2g(x, y, z) = 2y, ∂2h(x, y, z) = 0,
∂3f(x, y, z) = 1, ∂3g(x, y, z) = 0, ∂3h(x, y, z) = −1,

Thus, the system of equations we must consider is:

1 = 2λx+ µ, 1 = 2λy, 1 = −µ, x2 + y2 = 1, x− z = 1.

To solve the system, we proceed as follows:

• Applying the third equation to the first yields

2 = 2λx ⇒ 1 = λx.
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• The above and the second equation imply x ̸= 0 and y ̸= 0, hence

1

2y
= λ =

1

x
⇒ x = 2y.

• Putting this into the first constraint yields

(2y)2 + y2 = 1 ⇒ y = ± 1√
5

.

Since x = 2y and z = x− 1, the solutions of the system are thus given by

(x, y, z, λ, µ) =

(
+

2√
5
, +

1√
5
, +

2√
5
− 1,+

√
5

2
,−1

)
,

(x, y, z, λ, µ) =

(
−

2√
5
, −

1√
5
, −

2√
5
− 1,−

√
5

2
,−1

)
.

Finally, we check that

f

(
+

2√
5
, +

1√
5
, +

2√
5
− 1

)
= +

√
5− 1,

f

(
−

2√
5
, −

1√
5
, −

2√
5
− 1

)
= −

√
5− 1.

Consequently, subject to the constraints x2 + y2 = 1 and x − z = 1, the maximum value of
x+ y+ z is +

√
5− 1, while the minimum value of x+ y+ z is −

√
5− 1.

(>9000) (Extra Exploration) Put your geometry, calculus, and linear algebra knowledge to
the test! Can you prove the theorem stated in Question (8)?

(Hint: The starting point is to observe that C is a curve, by the result of Question (9) of
Problem Sheet 4. From here, you have all the background you need to do this!)

(Note: While I will not be posting the solution to this problem, I would be happy to chat
with anyone who wishes to attempt it. Good luck!)
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