
MTH5113 (Winter 2022): Problem Sheet 9
Solutions

(1) (Warm-up)

(a) Consider the (real-valued) function

F : R3 → R, F(x, y, z) = xy2z3,

as well as the parametric surface

P : (0, 1)× (0, 1) → R3, P(u, v) = (1, u, v).

Compute the surface integral of F over P.

(b) Consider the (real-valued) function

G : R3 → R, G(x, y, z) = x2 + y2,

as well as the parametric surface

τ : (0, 2π)× (0, 1) → R3, τ(u, v) = (v cosu, v sinu, v).

Compute the surface integral of G over τ.

(a) We begin by computing some required quantities. Differentiating P yields

∂1P(u, v) = (0, 1, 0), ∂2P(u, v) = (0, 0, 1),

and their cross product satisfies

∂1P(u, v)× ∂2P(u, v) = (1, 0, 0), |∂1P(u, v)× ∂2P(u, v)| = 1.

Furthermore, observe that

F(P(u, v)) = F(1, u, v) = u2v3.
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Thus, by the definition of the (parametric) surface integral, we obtain
x
P

F dA =
x

(0,1)×(0,1)

F(P(u, v))|∂1P(u, v)× ∂2P(u, v)|dudv

=

∫ 1

0

∫ 1

0

(u2v3 · 1)dudv

=

∫ 1

0

u2 du

∫ 1

0

v3 dv

=
1

12
.

(b) First, we differentiate τ,

∂1τ(u, v) = (−v sinu, v cosu, 0), ∂2τ(u, v) = (cosu, sinu, 1),

and we compute their cross product:

∂1τ(u, v)× ∂2τ(u, v) = (v cosu, v sinu, −v), |∂1τ(u, v)× ∂2τ(u, v)| =
√
2 · v.

In addition, note that

G(τ(u, v)) = G(v cosu, v sinu, v) = v2 cos2 u+ v2 sin2 u = v2.

Using the above, we can now evaluate the given surface integral:
x
τ

GdA =
x

(0,2π)×(0,1)

(v2 ·
√
2v)dudv

=
√
2

∫ 2π

0

du

∫ 1

0

v3 dv

=
√
2 · 2π · 1

4

=
π√
2

.

(2) (Intro to surface integrals) One can also define an intermediate notion of surface inte-
gration of vector fields over parametric surfaces. More specifically:

Definition. Let σ : U → R3 be a parametric surface, and let F be a vector field that
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is defined on the image of γ. We then define the surface integral of F over σ by
x
σ

F · dA =
x
U

{F(σ(u, v)) · [∂1σ(u, v)× ∂2σ(u, v)]σ(u,v)}dudv.

(a) Consider the vector field F on R3 given by

F(x, y, z) =
(
y, z5800ex

2000+46y1523

, x
)
(x,y,z)

,

and let P be the parametric plane

P : (0, 1)× (0, 1) → R3, P(u, v) = (1, u, v).

Compute the surface integral of F over P.

(b) Consider the vector field G on R3 given by

G(x, y, z) = (z, z, x2 + y2)(x,y,z),

and let τ be the parametric torus

τ : (0, 2π)× (0, 1) → R3, τ(u, v) = (v cosu, v sinu, v).

Compute the surface integral of G over τ.

(c) Consider the vector field H on R3 given by

H(x, y, z) = (−x, −y, z)(x,y,z),

and let q be the (regular) parametric surface

q : (0, 1)× (0, 1) → R3, q(u, v) = (u, v, u2 + v2).

Compute the surface integral of H over q.

(a) We begin by computing some preliminary quantities:

∂1P(u, v)× ∂2P(u, v) = (0, 1, 0)× (0, 0, 1)

= (1, 0, 0),
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F(P(u, v)) = F(1, u, v)

=
(
u, v5800e1+46u1523

, 1
)

P(u,v)
,

for any (u, v) ∈ (0, 1)× (u, 1). The above then implies

F(P(u, v)) · [∂1P(u, v)× ∂2P(u, v)]P(u,v) =
(
u, v5800e1+46u1523

, 1
)
· (1, 0, 0)

= u.

Thus, recalling our definition of parametric surface integral, we obtain
x
P

F · dA =
x

(0,1)×(0,1)

{
F(P(u, v)) · [∂1P(u, v)× ∂2P(u, v)]P(u,v)

}
dudv

=
x

(0,1)×(0,1)

ududv

=

∫ 1

0

dv

∫ 1

0

udu

=
1

2
.

(b) First, we compute, for any (u, v) ∈ (0, 2π)× (0, 1),

∂1τ(u, v)× ∂2τ(u, v) = (−v sinu, v cosu, 0)× (cosu, sinu, 1)

= (v cosu, v sinu, −v)

G(τ(u, v)) = (v, v, v2 cos2 u+ v2 sin2 u)τ(u,v)

= (v, v, v2)τ(u,v).

Combining the above, we then obtain

G(τ(u, v)) · [∂1τ(u, v)× ∂2τ(u, v)]τ(u,v) = (v, v, v2) · (v cosu, v sinu, −v)

= v2 cosu+ v2 sinu− v3.

Thus, by our given definition of surface integrals,
x
τ

G · dA =
x

(0,2π)×(0,1)

{
G(τ(u, v)) · [∂1τ(u, v)× ∂2τ(u, v)]τ(u,v)

}
dudv

=

∫ 1

0

∫ 2π

0

(v2 cosu+ v2 sinu− v3)dudv
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=

∫ 1

0

(v2 sinu− v2 cosu− v3u)u=2π
u=0 dv

= −2π

∫ 1

0

v3 dv

= −
π

2
.

(c) First, note that for any (u, v)× (0, 1)× (0, 1), we have

∂1q(u, v)× ∂2q(u, v) = (1, 0, 2u)× (0, 1, 2v)

= (−2u, −2v, 1),
H(q(u, v)) = (−u, −v, u2 + v2)q(u,v),

H(q(u, v)) · [∂1q(u, v)× ∂2q(u, v)]q(u,v) = (−u, −v, u2 + v2) · (−2u, −2v, 1)

= 3u2 + 3v2.

Finally, using the above, we can evaluate the desired surface integral:
x
q

H · dA =
x

(0,1)×(0,1)

{
H(q(u, v)) · [∂1q(u, v)× ∂2q(u, v)]q(u,v)

}
dudv

=

∫ 1

0

∫ 1

0

(3u2 + 3v2)dudv

= 2.

(3) (A Survey of Integration) Let S denote the set

S = {(u, v, u2 − v2) ∈ R3 | (u, v) ∈ (0, 1)× (0, 1)}.

(a) Show that S is a surface. In addition, give an injective parametrisation of S whose
image is precisely all of S.

(b) Compute the surface integral over S of the real-valued function

F : R3 → R, F(x, y, z) = xy.

(The double integral you get from expanding the surface integral is not so pleasant; you
will probably have to use the method of substitution twice to compute it.)

(c) Let us also assign to S the upward-facing orientation, i.e. the orientation in the positive
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z-direction. Then, compute the surface integral over S of the vector field

G(x, y, z) = (xy2, yx2, 1)(x,y,z), (x, y, z) ∈ R3.

(a) S is a surface, since it is the graph of the (smooth) function

f : (0, 1)× (0, 1) → R, f(u, v) = u2 − v2.

Furthermore, an injective parametrisation of all of S is given by

σ : (0, 1)× (0, 1) → S, σ(u, v) = (u, v, u2 − v2).

(b) We begin by computing the partial derivatives of σ:

∂1σ(u, v) = (1, 0, 2u), ∂2σ(u, v) = (0, 1, −2v).

Taking a cross product of the above yields

∂1σ(u, v)× ∂2σ(u, v) = (−2u, 2v, 1),

|∂1σ(u, v)× ∂2σ(u, v)| =
√

1+ 4u2 + 4v2.

Now, by part (a), we know that σ is an injective parametrisation of S whose image is all of
S. Thus, we can use σ to compute our surface integral:

x
S

F dA =
x
σ

F dA.

To calculate the above, we first note that

F(σ(u, v)) = F(u, v, u2 − v2) = uv.

Thus, our surface integral can now be expanded as
x
S

F dA =
x

(0,1)×(0,1)

(
uv

√
1+ 4u2 + 4v2

)
dudv.
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This can now be evaluated using Fubini’s theorem and the method of subsitution:

x
S

F dA =

∫ 1

0

v

[∫ 1

0

u
√
1+ 4u2 + 4v2 du

]
dv

=

∫ 1

0

v

[
1

12
(1+ 4u2 + 4v2)

3
2

]u=1

u=0

dv

=
1

12

∫ 1

0

v
[
(5+ 4v2)

3
2 − (1+ 4v2)

3
2

]
dv

=
1

12
· 1

20
·
[
(5+ 4v2)

5
2 − (1+ 4v2)

5
2

]v=1

v=0

=
1

240

(
9

5
2 − 5

5
2 − 5

5
2 + 1

5
2

)
=

61

60
−

5
√
5

24
. (Sorry ,)

(Even if you were not able to get the final number, the most important part is that you can
correctly expand the surface integral into a double integral.)

(c) First, recall from part (b) that

∂1σ(u, v)× ∂2σ(u, v) = (−2u, 2v, 1),

hence it follows that σ generates the upward-facing orientation of S. Consequently, we can
use the parametrisation σ to compute our surface integrals:

x
S

G · dA = +
x
U

{G(σ(u, v)) · [∂1σ(u, v)× ∂2σ(u, v)]σ(u,v)}dudv.

To calculate the above, we observe that

G(σ(u, v)) = (uv2, vu2, 1)σ(u,v),

and hence

G(σ(u, v)) · [∂1σ(u, v)× ∂2σ(u, v)]σ(u,v) = (uv2, vu2, 1) · (−2u, 2v, 1) = 1.

Therefore, we conclude that
x
S

G · dA =
x

(0,1)×(0,1)

1 dudv = 1.
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(4) [Marked] Let S denote the following surface:

S = {(x, y, z) ∈ R3 | x = y2 − z2, 0 < y < 1, 0 < z < 1}.

(a) Compute the surface integral over S of the function

G : R3 → R, G(x, y, z) = yz.

(b) Let us also assign to S the orientation in direction of increasing x-value. Then, compute
the surface integral over S of the vector field H on R3 given by

H(x, y, z) = (y, 0, z)(x,y,z),

(a) The first step is to parametrise S appropriately. For this, we set u = y and v = z:

σ : (0, 1)× (0, 1) → S, σ(u, v) = (u2 − v2, u, v).

Observe σ is injective, and its image is exactly S. [1 mark for correct parametrisation]

Furthermore, for any (u, v) ∈ (0, 1)× (0, 1), we compute

∂1σ(u, v) = (2u, 1, 0),
∂2σ(u, v) = (−2v, 0, 1),

∂1σ(u, v)× ∂2σ(u, v) = (1,−2u, 2v),

|∂1σ(u, v)× ∂2σ(u, v)| =
√

1+ 4u2 + 4v2.

Similarly, we have that
G(σ(u, v)) = uv.

We can now use σ and the above to compute the surface integral over S:
x
S

GdA =
x
σ

GdA

=
x

(0,1)×(0,1)

G(ρ(u, v))|∂1ρ(u, v)× ∂2ρ(u, v)|dudv

=

∫ 1

0

v

∫ 1

0

u
√
1+ 4u2 + 4v2 dudv.

8



[1 mark for almost correct answer up to this point] From here, we directly compute

x
S

GdA =
1

12

∫ 1

0

v(1+ 4u2 + 4v2)
3
2 |u=1

u=0dv

=
1

12

∫ 1

0

[v(5+ 4v2)
3
2 − v(1+ 4v2)

3
2 ]dv

=
1

240
[(5+ 4v2)

5
2 − (1+ 4v2)

5
2 ]v=1

v=0

=
1

240
[(9

5
2 − 5

5
2 ) − (5

5
2 − 1

5
2 )]

=
1

240
(244− 2 · 5

5
2 ).

[1 mark for somewhat correct integral]

(b) We can again use the parametrisation σ from (a). Observe that

[∂1σ(u, v)× ∂2σ(u, v)]σ(u,v) = (1,−2u, 2v)σ(u,v),

which is in the normal direction generated by σ, points in the direction of increasing x (since
the x-component is +1). Thus, σ generates our given orientation of S, and

x
S

H · dA = +
x

(0,1)×(0,1)

{H(σ(u, v)) · [∂1σ(u, v)× ∂2σ(u, v)]σ(u,v)}dudv.

[1 mark for correct observation of orientation]

The integral can now be computed directly. First, we have

H(σ(u, v)) = (u, 0, v)σ(u,v).

Thus, combining all the above, we obtain that
x
S

H · dA = +
x

(0,1)×(0,1)

[(u, 0, v) · (1,−2u, 2v)]dudv

=

∫ 1

0

∫ 1

0

(u+ 2v2)dudv

=

∫ 1

0

(
1

2
+ 2v2

)
dv

=
1

2
+

2

3
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=
7

6
.

[1 mark for an almost correct answer]

(5) [Tutorial]

(a) Consider the surface (you may assume this is indeed a surface)

P = {(u, v, u4 + v) ∈ R3 | (u, v) ∈ (0, 1)× (−1, 1)}.

Compute the surface integral over P of the following function:

F : R3 → R, F(x, y, z) = 6x5.

(b) Consider the sphere,

S2 = {(x, y, z) ∈ R3 | x2 + y2 + z2 = 1},

and let S2 be given the “outward-facing” orientation. Compute the surface integral
over S2 of the vector field F on R3 defined by the formula

F(x, y, z) = (0, 0, z3)(x,y,z).

(a) The first step is to appropriately parametrise P . Observe that the map

σ : (0, 1)× (−1, 1) → P , σ(u, v) = (u, v, u4 + v)

is a parametrisation of P . Moreover, note that σ is injective, and its image is all of P . As a
result, we have, from the definition of surface integrals,

x
P

F dA =
x
σ

F dA =
x

(0,1)×(−1,1)

F(σ(u, v))|∂1σ(u, v)× ∂2σ(u, v)|dudv.

Next, the partial derivatives of σ satisfy

∂1σ(u, v) = (1, 0, 4u3), ∂2σ(u, v) = (0, 1, 1).
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Thus, the required terms in the above integrand satisfy

|∂1σ(u, v)× ∂2σ(u, v)| = |(−4u3, −1, 1)| =
√
2+ 16u6,

F(σ(u, v)) = 6u5.

Combining all the above, we can now compute the surface integral as

x
P

F dA =

∫ 1

−1

∫ 1

0

6u5
√

2+ 16u6 dudv

= 2

∫ 1

0

6u5
√

2+ 16u6 du

= 2 · 1

16
· 2
3
·
[
(2+ 16u6)

3
2

]u=1

u=0

=
13
√
2

3
.

(b) Recall (from lectures and the lecture notes) that the parametrisation of S2 given by

ρ : (0, 2π)× (0, π) → S2, ρ(u, v) = (cosu sin v, sinu sin v, cos v),

is injective, and that its image is “almost all” of S2 (the image excludes only two points and
a semicircle). Moreover, from the usual computations, we have that

∂1ρ(u, v)× ∂2ρ(u, v) = − sin v · (cosu sin v, sinu sin v, cos v) = − sin v · ρ(u, v).

In particular, the arrows

[∂1ρ(u, v)× ∂2ρ(u, v)]ρ(u,v) = − sin v · ρ(u, v)ρ(u,v),

which are normal to S2, point inward from S2. Thus, ρ generates the orientation opposite to
our given orientation of S2, and hence we have that

x
S2

F · dA = −
x

(0,2π)×(0,π)

{
F(ρ(u, v)) · [∂1ρ(u, v)× ∂2ρ(u, v)]ρ(u,v)

}
dudv.

Note the integrand satisfies

F(ρ(u, v)) · [∂1ρ(u, v)× ∂2ρ(u, v)]ρ(u,v) = − sin v(0, 0, cos3 v) · (cosu sin v, sinu sin v, cos v)
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= − sin v cos4 v.

As a result,

x
S2

F · dA =

∫ 2π

0

∫π

0

sin v cos4 v dvdu

= 2π · 1
5
[− cos5 v]v=π

v=0

=
4π

5
.

(6) (A-levels, revisited)

(a) Show that the surface area of a sphere of radius r > 0,

Sr = {(x, y, z) ∈ R3 | x2 + y2 + z2 = r2},

is equal to 4πr2.

(b) Show that the area of the side of a cone with base radius r > 0 and height h > 0,

Cr,h =

{
(x, y, z) ∈ R3 | 0 < z < h, x2 + y2 = r2

(
1−

z

h

)2
}

,

is equal to πr
√
r2 + h2.

(a) Similar to the case of a unit sphere, we see that

ρr : (0, 2π)× (0, π) → Sr, ρr(u, v) = (r cosu sin v, r sinu sin v, r cos v)

is an injective parametrisation of Sr, whose image is all of Sr except for two points and a
semicircle. Moreover, a direct calculation (analogous to the one for S2) shows that

|∂1ρr(u, v)× ∂2ρr(u, v)| = |− r sin v · ρr(u, v)| = r2 sin v.

As a result, we obtain

A(Sr) =
x

(0,2π)×(0,π)

r2 sin v dudv = r2
∫ 2π

0

du

∫π

0

sin v dv = 4πr2.
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(b) The main step is to parametrise Cr,h correctly. For this, we can take

σ : (0, 2π)× (0, h) → Cr,h, σ(u, v) = (r(1− vh−1) cosu, r(1− vh−1) sinu, v).

In particular, σ is injective, and its image is all of Cr,h except for a line. (Plot this out and
see for yourself!) Moreover, direct computations yield

∂1σ(u, v) = (−r(1− vh−1) sinu, r(1− vh−1) cosu, 0),
∂2σ(u, v) = (−rh−1 cosu, −rh−1 sinu, 1),

∂1σ(u, v)× ∂2σ(u, v) = (r(1− vh−1) cosu, r(1− vh−1) sinu, r2h−1(1− vh−1)),

|∂1σ(u, v)× ∂2σ(u, v)| = r
(
1−

v

h

)√
1+

( r

h

)2

.

Combining the above, we conclude that the surface area is

A(Cr,h) = r

√
1+

( r

h

)2 x
(0,2π)×(0,h)

(
1−

v

h

)
dudv

= 2πr

√
1+

( r

h

)2
∫h

0

(
1−

v

h

)
dv

= 2πr

√
1+

( r

h

)2

· h
2

= πr
√
r2 + h2.

(7) (Reversal of orientations) Let S ⊆ R3 be an oriented surface, and let σ : U → S be a
parametrisation of S. Moreover, define the set

Ur = {(v, u) | (u, v) ∈ U}

and define the parametric surface

σr : Ur → R3, σr(v, u) = σ(u, v).

In other words, σr is precisely σ but with the roles of u and v reversed.

(a) Show that for any (u, v) ∈ U,

∂1σr(v, u)× ∂2σr(v, u) = −[∂1σ(u, v)× ∂2σ(u, v)].
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(b) Show that σr is also a parametrisation of S, and that σr has the same image as σ.

(c) Use the formula from part (a) to conclude that if σ generates an orientation O of S,
then σr generates the orientation opposite to O.

(a) We begin by relating the partial derivatives of σ and σr—for any (v, u) ∈ Ur,

∂1σr(v, u) = ∂v[σr(v, u)] = ∂v[σ(u, v)] = ∂2σ(u, v),
∂2σr(v, u) = ∂u[σr(v, u)] = ∂u[σ(u, v)] = ∂1σ(u, v).

As a result, using that the cross product is antisymmetric, we conclude that

∂1σr(v, u)× ∂2σr(v, u) = ∂2σ(u, v)× ∂1σ(u, v)

= −[∂1σ(u, v)× ∂2σ(u, v)].

(b) First, suppose p is in the image of σ, so that p = σ(u, v) for some (u, v) ∈ U. Then, by
definition, (v, u) ∈ Ur and σr(v, u) = σ(u, v) = p, and it follows that p is also in the image
of σr. Conversely, if p is in the image of σr, then p = σr(v, u) for some (v, u) ∈ Ur. This
then implies (u, v) ∈ U and σ(u, v) = σr(v, u) = p, and hence p is also in the image of σr.
From the above, we conclude that σ and σr have the same image.

In particular, the above implies that the image of σr lies within S. Moreover, using the
formula obtained from part (a), we have, for any (v, u) ∈ Ur,

|∂1σr(v, u)× ∂2σr(v, u)| = |∂1σ(u, v)× ∂2σ(u, v)| ̸= 0,

since σ is regular by assumption. This implies that σr is also regular.

Combining the above, we conclude that σr is indeed a parametrisation of S.

(c) For any point p = σ(u, v) = σr(v, u) of S (where (u, v) ∈ U), we have that:

• The orientation generated by σ at p is given by

nσ(u, v) = +

[
∂1σ(u, v)× ∂2σ(u, v)

|∂1σ(u, v)× ∂2σ(u, v)|

]
σ(u,v)

.
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• Recalling the result from (a), the orientation selected by σr at p is given by

nσr
(v, u) = +

[
∂1σr(v, u)× ∂2σr(v, u)

|∂1σr(v, u)× ∂2σr(v, u)|

]
σr(v,u)

= −

[
∂1σ(u, v)× ∂2σ(u, v)

|∂1σ(u, v)× ∂2σ(u, v)|

]
σ(u,v)

= −nσ(u, v).

In particular, the above shows that σr generates the opposite unit normals as σ, and hence
σr generates the orientation opposite to that of σ.

(8) (The paradox of Gabriel’s horn) Consider the surface of revolution

G =

{
(x, y, z) ∈ R3

∣∣∣∣y2 + z2 =
1

x2
, x > 1

}
,

which is sometimes nicknamed Gabriel’s horn. (Before proceeding, you should search for
“Gabriel’s horn” on Google Images to see an illustration of G.)

(a) Show that G has infinite surface area.

(b) Show that the interior of G,

I =

{
(x, y, z) ∈ R3

∣∣∣∣y2 + z2 ≤ 1

x2
, x > 1

}
,

has finite volume.

In other words, you can fill up the inside of the “horn” with a finite amount of paint, but
you cannot paint the “horn” itself using a finite amount of paint!

(a) To compute the surface area, we first parametrise G appropriately:

σ : (1,∞)× (0, 2π) → G, σ(u, v) = (u, u−1 cos v, u−1 sin v).

Note in particular that σ is injective, and its image is all of G except for a curve. (The
reasoning here is analogous to that for Question (4).)

Next, we do some computations involving σ:

∂1σ(u, v) = (1, −u−2 cos v, −u−2 sin v),
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∂2σ(u, v) = (0, −u−1 sin v, u−1 cos v),
∂1σ(u, v)× ∂2σ(u, v) = (−u−3, −u−1 cos v, −u−1 sin v),

|∂1σ(u, v)× ∂2σ(u, v)| = u−1
√

1+ u−4,

Combining the above with the definition of surface area, we conclude that

A(G) =
x

(1,∞)×(0,2π)

|∂1σ(u, v)× ∂2σ(u, v)|dudv

=

∫ 2π

0

dv

∫∞
1

1

u

√
1+

1

u4
du.

Since 1+ u−4 ≥ 1 for all u ∈ R, it follows that

A(G) ≥ 2π

∫∞
1

1

u
du = lim

u↗∞ lnu− ln 1 = +∞.

Thus, we conclude that A(G) is indeed infinite.

(b) Recall the volume of I is
V(I) =

y
I

1 dxdydz.

The easiest way to describe I in a way that is convenient for integration is to do a change of
variables and write y and z in terms of polar coordinates:

x = x, y = r cos θ, z = r sin θ.

In particular, I can be described in these new coordinates as

I = {(x, r, θ) ∈ R3 | x > 1, 0 ≤ r ≤ x−1, 0 ≤ θ ≤ 2π}.

Note that the Jacobian with respect to this change of variables is

J = det ∂(x, y, z)
∂(x, r, θ)

= det

1 0 0

0 cos θ −r sin θ

0 sin θ r cos θ

 = r.

16



Thus, by the change of variables formula and Fubini’s theorem, we have that

V(I) =

∫ 2π

0

∫∞
1

∫ x−1

0

J drdxdθ

=

∫ 2π

0

dθ

∫∞
1

∫ x−1

0

r drdx

= 2π · 1
2

∫∞
1

1

x2
dx

= π.

Thus, the volume of I is indeed finite.
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