
MTH5113 (Winter 2022): Problem Sheet 6
All coursework should be submitted individually.

• Problems marked “[Marked]” should be submitted and will be marked.

Be sure to write your name and student ID on your submission!

Please submit the completed problem(s) on QMPlus:

• At the portal for Coursework Submission 3.

(1) (Warm-up) For each of the sets C and points p ∈ C given below:

(i) Show that C is a curve.

(ii) Sketch C, and indicate the point p on C.

(iii) Give a parametrisation of C that passes through p.

(a) Hyperbola:
C = {(x, y) ∈ R2 | x2 − y2 = −1}, p = (0,−1).

(b) Cubic:
C = {(x, y) ∈ R2 | (x− 2)3 = y− 3}, p = (0,−5).

(c) Ellipse:
C = {(x, y) ∈ R2 | x2 + 6x+ 4y2 − 8y = 3}, p = (−3,−1).

(2) (Fun with plotting) The following are exercises involving sketching parametric surfaces.
Do make use of computer programs or webpages (see the links in the Additional Resources
section on the QMPlus page) to help you with your sketches.

(a) Sphere: Consider the following parametric surface:

σ : R2 → R3, σ(u, v) = (cosu sin v, sinu sin v, cos v).

(i) Sketch the paths obtained from σ by holding v constant, with values

v0 = 0,
π
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(ii) Sketch the paths obtained from σ by holding u constant, with values

u0 = 0,
π

2
, π,

3π

2
, 2π.

(iii) Sketch the image of σ.

(b) Hyperboloid: Consider the following parametric surface:

h : R2 → R3, h(u, v) = (cosu cosh v, sinu cosh v, sinh v).

(i) Sketch the paths obtained from h by holding v constant, with values

v0 = −2,−1, 0, 1, 2.

(ii) Sketch the paths obtained from h by holding u constant, with values

u0 = 0,
π

2
, π,

3π

2
, 2π.

(iii) Sketch the image of h.

(3) (Warm-up) For each of the following parametric surfaces σ and parameters (u0, v0),
compute the tangent plane to σ at (u0, v0):

(a) σ is the parametric cylinder,

σ : R2 → R3, σ(u, v) = (cosu, sinu, v),

and (u0, v0) = (π
2
,−1).

(b) σ is the parametric one-sheeted hyperboloid,

σ : R2 → R3, σ(u, v) = (cosu cosh v, sinu cosh v, sinh v).

and (u0, v0) = (π, 1).

(4) (Introduction to curve integrals) One can also define an intermediate notion of curve
integration of vector fields over parametric curves. More specifically:
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Definition. Let γ : (a, b) → Rn be a parametric curve, and let F be a vector field
that is defined on the image of γ. We then define the curve integral of F over γ by∫

γ

F · ds =
∫b

a

[F(γ(t)) · γ ′(t)γ(t)]dt.

For each of the following γ and F, compute the curve integral of F over γ:

(a) γ is the regular parametric curve

γ : (0, 1) → R3, γ(t) = (t, −t, 2t),

and F is the vector field on R3 given by

F(x, y, z) = (x, y, z)(x,y,z).

(b) γ is the regular parametric curve

γ : (0, 2π) → R2, γ(t) = (cos t, sin t cos t),

and F is the vector field on R2 given by

F(x, y) = (x2, 0)(x,y).

(5) [Marked] Consider the clockwise-oriented (shifted) circle,

C = {(x, y) ∈ R2 | (x+ 2)2 + (y− 3)2 = 9},

and consider the vector field F on R2 given by

F(x, y) = (y,−x)(x,y).

(a) Give an injective parametrisation γ of C such that the image of γ differs from C by
only a finite number of points. Which orientation of C does γ generate?

(b) Compute the (curve) integral of F over the curve C.

(6) [Tutorial] For each of the following oriented curves C and vector fields F:
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(i) Give an injective parametrisation γ of C such that the image of γ differs from C by
only a finite number of points. Which orientation does γ generate?

(ii) Compute the (curve) integral of F over the curve C.

(a) C is the anticlockwise-oriented ellipse,

C = {(x, y) ∈ R2 | 3x2 + 2y2 = 6},

and F is the vector field on R2 given by

F(x, y) = (y, −x)(x,y).

(b) C is the downward-oriented (with decreasing z-value) helical segment,

C = {(cos t, sin t, t) | t ∈ (0, 2π)},

and F is the vector field on R3 given by

F(x, y, z) = (−y, x, 1)(x,y,z).

(7) (Exploring curvature) Let γ : I → Rn be any regular parametric curve. We then define
the curvature of γ at t ∈ I by the formula

κγ(t) =
1

|γ ′(t)|

∣∣∣∣( γ ′

|γ ′|

) ′

(t)

∣∣∣∣ .

(This can be viewed as the “change in the direction of γ per unit length”; see the 2019
version of the MTH5113 lecture notes for additional discussions of curvature.)

(a) Let p, v ∈ Rn, and let ℓ be the parametric line,

ℓ : R → Rn, ℓ(t) = p + tv.

Compute the curvature of ℓ at every t ∈ R.

(b) Let R > 0, and let γR be the parametric circle of radius R:

γR : R → R2, γR(t) = (R cos t, R sin t).
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Compute the curvature of γR at every t ∈ R.

(c) Show that curvature is independent of parametrisation. More specificially, show that
if γ is a reparametrisation of γ̃ : Ĩ → Rn, with corresponding change of variables
ϕ : I → Ĩ (in particular, γ(t) = γ̃(ϕ(t)) for all t ∈ I), then

κγ(t) = κγ̃(ϕ(t)), t ∈ I.

(8) (Polar curves) Let h : R → R be a smooth positive periodic function, with period 2π:

h(θ) > 0, h(θ+ 2π) = h(θ), x ∈ R.

Let the polar curve P be the set of all points in R2 satisfying the relation

r = h(θ)

in polar coordinates. (Here, you can assume that P is indeed a curve.)

(a) The unit circle C = {(x, y) ∈ R | x2 + y2 = 1} is a polar curve. What is h here?

(b) Give a injective parametrisation of P whose image is all of P except for a single point.

(c) Derive a formula for the arc length of P.

(9) (Conic sections) Let N denote the following cone:

N = {(x, y, z) ∈ R3 | z2 = x2 + y2}.

In addition, let P ⊆ R3 denote an arbitrary plane that does not pass through the origin.
More specifically, P is a set of the form

P = {(x, y, z) ∈ R3 | ax+ by+ cz = d}

where a, b, c, d ∈ R satisfy (a, b, c) ̸= (0, 0, 0) and d ̸= 0. A set of the form N ∩ P (i.e. the
intersection of the cone N and the plane P) is called a conic section.

(a) Use the theorem in Question (9) of Problem Sheet 4 to show that any conic section
N ∩ P is indeed a curve. (Hint: You will have to be resourceful to do this. The first
step is to express N ∩ P as an appropriate level set.)
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(b) Find examples of such planes P such that the conic section N ∩ P is:

(i) A circle.

(ii) An ellipse.

(iii) A parabola.

(iv) A hyperbola.

Check your answers graphically on a computer!
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