MTH5113 (Winter 2022): Problem Sheet 3
Solutions

(1) (Warm-up)

(a) Compute the integral

where f is the real-valued function

f:R—- R, f(x) =1+x+x>+x>

(b) Compute the integral
J g(t) dt,

where g is the real-valued function

g:R— R, g(t) =sintcost.

(c) Compute the double integral
{[ nana,
R

where R is the rectangle [0,5] x [0, 1], and where h is the function

h:R? =R, h(x,y) =e*+e*e.

(a) Notice that f is the derivative of the function

1 1 1
FIRS R, Fx)=x+ x4+ 5x° + -,
: (x) x+2x +3x +4x,

that is, F/(x) = f(x) for every x € R. Thus, by the fundamental theorem of calculus,

J] f(x) dx = J] F/(x) dx

0 0
= F(1) = F(0)



—<1+21+31+41) (0+20+30+40

(b) The easiest method is to recall the trigonometric identity
: 1.
g(t) =sintcost = 7 sin(2t), teR.
Noting that g is the derivative of the function
1
G(t) = ~2 cos(2t),

the fundamental theorem of calculus then yields

X=TT

1
= —— cos(2m) + 1 cos(—2m) = 0.

4 4

r g(t)dt = {—% cos(Zt)]

X=—TT

Alternatively, if you do not remember the double angle formula, you can also integrate g by

substitution. In particular, applying the change of variables
u =sint, du = costdt,

we then obtain ;

J g(t)dt:J sintcostdtzjuduzo.
—T 0

—TT

In particular, we noticed that t = 47 both corresponded to uw = 0.

(c) First, we apply Fubini’s theorem to write the double integral as

fror-{ |

1
J (e + e"ey)dy] dx.
R

0

To evaluate the inner integral, we treat x as a constant and integrate with respect to y:

5
{[naa= J (ey + ere¥) |7, dx
R 0 .

5
= J [e®* + (e — 1)e¥]dx.
0



The remaining integral can also be computed directly:

x=5

1
j hdA = [ez"—k (e — 1)4
2 .
R X

1 1
= {2e10+(e—1)e5} — LJr(e—l)}

1 1
:§e1°+e6—es—e+2.

One can also integrate in the reverse order:

ghd/\—

1

%

5
U (e + exey)dx} dy
o Lo

1
110 5.y 1 y
<2e +ee—2—e dy

1
€]O+€6—€5—€+i.

N =5

Both methods yield the same answer.

(2) (Warm-up)

(a) Consider the function
VERIA{(0,0} = R, V(x,y) =In(x*+1y?).

(i) Compute the gradient VV(x,y) for each (x,y) € R*\ {(0,0)}.
(ii) Find VV(3,4) and VV(-5,12).

(b) Consider the function
w:R 5 R, w(x,y,z) =xy +xz+yz.
(i) Compute the gradient Vw(x,y,z) for each (x,y,z) € R>.

(i) Find Vw(—1,1,6).

(a) These are direct computations using the definition of the gradient:



(i) First, we compute the partial derivatives of V. Using the chain rule yields

1 2x
01 V(x,y) = 2wt 0.(x* +y?) = 2yl
1 2
,V(x,y) = 2 0y(x* +y?) = 2 _Eyz-

Thus, by definition, the gradient of V, at any nonzero (x,y) € R?, is

2x 2
VV(x,y) = (01 V(x,y), an(X,y))(x,y) - (Xz +yz> X2 _Eyz) :
(xy)

(ii) Here, we plug in the appropriate values for x and y:

2-3 2-4 6 8
vVi3,4) (32+42’ 32+42)(3,4) (25’25>(3’4)’

_(2:(55) 212 _ (o
VV(-5,12) = (5z+ 120 5 ¢ 122>(—5,12) - ( @’@)—s,m'

(b) These are again direct computations:

(i) Taking partial derivatives, we obtain
ow(x,y,z) =y +z, LHw(x,y,z) = x + z, osw(x,y,z) =x+y.
Thus, the gradient of w, at any (x,y,z) € R3, is given by

VW(X)U»Z) = (y +z,X +2z,X +y)(x»y»l)'

(ii) Here, we plug in the appropriate values for x, y, and z:

VW(—1, 1,6) = (1 + 6,—1 + 6,—] + 1)(71,1,6) = (7)5)0)(71,1,6]-

(3) (Warm-up) Are the following parametric curves regular?

(a) Quartic function:
a:R — R a(t) = (t,0,t%).



(b) No idea what to call this thing:

b:R—>REL  b(t)=((t—1)3 e,

(c) Lemniscate of Gerono:

c:R - R? c(t) = (cost,sintcost).

(a) To check whether a is regular, we compute its derivative for each t € R:
a’'(t) = (1,0,4t%).

In particular, a’(t) never vanishes (since its x-component is always 1), hence |a’(t)| is every-

where non-zero. Thus, by definition, a is regular.
We can also check |a’(t)| # 0 directly—in particular,
a'(t) =v1+16t6 >vV1=1+£0, teR,
since 16t° is always non-negative.
(b) We begin by differentiating b (via the power and chain rules):
b/(t) = (3(t—1)3,2(t — 1)),
Note in particular that
b'(1) = (3(1—=1)%2(1 — 1)6“’”2) = (0,0), b'(1)] =0.
As a result, b is not regular.
(c) Differentiating ¢ using the product rule, we obtain
¢/(t) = (—sint, cos’t —sin’t) = (—sint, 1 — 2sin’ t),

where in the last step, we used that cos®t + sin’t = 1.
Observe that given any t € R, whenever the x-component of ¢’(t) vanishes (that is,

sint = 0), the y-component of ¢’(t) is 1 —2sin*t = 1 # 0 and hence is nonzero. As a result,



¢/(t) can never vanish for any t € R, and thus c is regular.
(4) [Marked] Let g be the function
f:RE SR, flx,y,z) =xy’2,
and let C denote the region
C={(xy,z2) eR*|0<z<y,0<y<x,0<x< 1L

(a) Sketch the region C.

(b) Compute the triple integral

f! fdv.

(a) A sketch of the solid region C is given below: [1 mark for mostly correct sketch]

(b) We first apply Fubini’s theorem to decompose

1T px py 1 X y
r”de:J J J xy?z? dzdydx:J XJ yzj 2" dzdydx. [1 mark]
I 0 Jo Jo o Jo Jo
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The inner integral can now be computed using the fundamental theorem of calculus:

s |
J” de—J XJ <y‘-y'1> dydx—J XJ y°dydx.
Vo 4 4] %)

C 0 0 0 0
The remaining integrals can be similarly computed:
[ 1 1, 1 1
fdv=—| (x-oxX)dx=55 | X¥*dx==—.
[(” 4 L <‘ 7" > tT 28 L 252
[2 marks for mostly correct computation]
(5) [Tutorial] Answer the following:

(a) Let f be the function
f:R? > R, f(x,y) = x%y,

and let D denote the triangular region
D={xy)eR0<y<1, xl <y}

(i) Sketch the region D on a Cartesian plane.

j fdA.

D

(ii) Compute the double integral

(b) Let Q denote the region
Q={(xy,z) eR*|0<x<y+2z0<y<1,0<z<1}

(i) Sketch the region Q (or at least, do the best you can).

(ii) Use a triple integral to compute the volume of Q.

(a) A sketch of D is below (D is the green region):



1.5

15 —1 —05 05 1 15
05!

To compute the double integral, we apply Fubini’s theorem (to a rectangular region

containing D, and to a function that is equal to f on D and vanishes outside D):
1y
f fdA :J U X2y dx} dy.
D 0 L=y
To evaluate the inner integral, we apply the fundamental theorem of calculus:

2

1 B ‘
HfdA: —J y()Y,dy = —J y'dy.
5 3 0 3 0

Applying the fundamental theorem of calculus again to the remaining integral yields

21
fdA == -y’
j dA =3 2y

D

(b) A sketch of the solid region Q is given below:



To compute the volume of Q, we first apply Fubini’s theorem to decompose

V(Q) = [[[1av = J; E JW dxdydz.
Q

0

The iterated integrals can now be computed using the fundamental theorem of calculus:

V(Q) = f f (y +2)dydz

0Jo

NESE

1.

(6) (Fun with cycloids) Consider the parametric curve
c:R— R? c(t) =(t—sint, 1 —cost).

(The path mapped out by ¢ is known as a cycloid.)

(a) Show that c is not regular. At which t € R do the values |¢’(t)| vanish?



(b) Plot the image of ¢ using a computer (see the links on the QMPlus page). What
happens at the points c¢(t) along the plot at which |¢/(t)] = 07

(a) Taking a derivative of ¢ yields
¢/(t) = (1 —cost,sint).

Taking the norm of the above, we see that

/(0] = /(1 — cos £)? + sin? t
= \/1 —2cost + cos?t + sin?t

=2 —2cost.

In particular, note that |¢’(t)| vanishes whenever cost = 1.
Recalling the basic properties of the cosine function, we conclude that |c’(t)| vanishes

whenever t = 2k7t for any integer k. In particular, ¢ fails to be regular.

(b) A computer plot of the values of ¢ is given below:

—12 -0 -8 —6 —4 -2 ' 2 4 6 & 10 12

The points on the plot at which ¢’ vanishes are marked in green. At these points, the

plot contains a “jagged edge” in which the direction of the path changes instantaneously.

(7) (More parametric curves) For each of the following parametric curves y: (i) sketch, with

the help of a computer, the image of v, and (ii) determine whether 7y is regular.

(a) Cissoid of Diocles:

t? 3
:R— R? t)=—s5,+—5 -
Y:R=R, vyt (1_%t2,1_+t2)

(b) Witch of Agnesi:

1
. 2 _
Y:R—= R, ww—qug)
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(c) Tricuspoid:

v:R — R? v(t) = (2cost + cos(2t), 2sint — sin(2t)).

(a) First, we differentiate y using the quotient rule:

i — (4 t? d [/ ¢
y()_<E<1+tz>’ﬁ(1+t2>>

O+t 2t -2 2t (1 4t7) 3P —t2- 2t
B (1+t2)2 ’ (1+t2)2

B 2ttt 43t
SN+ (T+2)2)

Note in particular that

iy [ 2:0 0" 43.0%\
V10 = (g Trer ) = (0.0

As a result, y is not regular.

(b) Differentiating y yields, for each t € R,

Lo 2t
0= (4 trap)

In particular, observe that y’(t) # (0,0) for any t € R, since the x-component of y’(t) is

never vanishes. Thus, vy is regular.
(c) First, differentiating vy yields
v'(t) = (—2sint — 2sin(2t), 2cost — 2 cos(2t)).
Observe in particular that,
v'(0)=(-2-0—-2-0,2-1T—2-1) =(0,0),

and hence 7y fails to be regular.
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If you cannot see the above directly, you can also try to directly solve the system
—2sint — 2sin(2t) =0, 2cost — 2cos(2t) = 0. (1)
Using some trigonometric identities, the first equation of (1) can be rearranged as

—sint = sin(2t) = 2sintcost,

which is satisfied if and only if cost = —% or sint = 0. One specific solution of this is t = 0,

which you can then check also satisfies the second equation in (1). (Other values of t that

also solve both equations in (1) include t = & and t = 4F.)

(8) (Reparametrise my hyperbola!) Consider the following parametric curves:

a:R— R? a(t) = (cosht,sinht),
b:R R, bt) = (\/1 +t2,t) .
(a) Sketch the image of b.
(b) Show that both a and b are regular.

(c) Show that a(t) = b(sinht) for any t € R. According to definition, what else must you

to show in order to demonstrate that a and b are reparametrisations of each other?

(d) Finish what you started in (c)—show that a and b are reparametrisations of each other.

(You will not need advanced knowledge, but you will have to be extra resourceful.)

(a) A sketch of the image of b is found below:

12



—b

(b) First, for a, we recall the derivative formulas for cosh and sinh:
a’(t) = (sinht,cosht), teR.

Recalling the identity cosh?t — sinh*t = 1, we obtain, for each t € R,

la’(t)] = Vsinh?t + cosh?t = V1 + 2sinh?t > V1 > 0,

and it follows that a is indeed regular.

Similarly, for b, we differentiate:

bi(t) = (ﬁ’ 1) '

Since the y-component of b’(t) never vanishes, it follows that b is regular.
(c) Using again that cosh?t —sinh®t = 1, we compute

b(sinht) = (\/ 1+ sinh? t, sinh t> = (\/ cosh? t, sinh t) = (cosh t,sinh t) = a(t),

where in the second to last step, we recalled that cosht is always positive.

To show that a and b are reparametrisations of each other, we must show, in addition

13



to the above, that the change of variables ¢(t) = sinh t satisfies: (i) ¢ is smooth, (ii) ¢ is a

bijection between R and itself, and (iii) its inverse ¢~ is smooth.

(d) First, note that ¢ is smooth since

1

(t) =sinht = (e —e™),

and the exponential functions on the right-hand side are clearly smooth.

Next, we recall that ¢ is always strictly increasing, since for any t € R,

¢'(t) =cosht = =(e' +e*) > 0.

N =

In particular, if t < t’, then ¢(t) < d(t’). Thus, it follows that ¢ is injective.

Now, consider any s € R, and let us try to solve
sinht = ¢(t) =s.
Censulting-Goeegle Applying some really clever algebraic manipulations, the above becomes

s==(et—e™), (e —2s-et—1=0,

N —

and the quadratic formula yields
et =s+s2+1.
Since s ++/s2 41 > 0 (for any s € R), we can take its logarithm, and hence
t:1n<s+ sz—H)

solves the equation ¢(t) = s. In particular, ¢ is surjective onto R. Moreover, since ¢ is
injective and surjective, it follows that ¢ is a bijection between R and itself.

Finally, the above derivation also gives a formula for the inverse of ¢:
¢ '(s) =In <s+ sz+1> :

Since s + vs2+1 > 0 for all s € R, and since In is infinitely differentiable as long as its

input is positive, it follows that ¢~ is smooth.

14



(9) (Numbers, Sets, and Functions revisited) Let P denote the set of all regular parametric
curves in R™. Given any two yq,v2 € P, we write y; ~ y; iff vy is a reparametrisation of y;.

Show that this ~ defines an equivalence relation on P.
To show ~ is an equivalence relation, we must show ~ is reflexive, symmetric, and transitive.

First, to show ~ is reflexive, we must show that y ~vy for any y € P. To see this, we simply

note that if vy : I — R™, then the identity function on I,

CbO:IHI? d)(t):t7

trivially satisfies y(do(t)) = y(t) for all t € I. Moreover, clearly ¢y is a bijection between I
and itself, and both ¢y and its inverse (which is equal to ¢) are smooth as well. Thus, by

definition, vy is a reparametrisation of itself, and hence y ~ .

Next, to show symmetry, we must show that if y1 ~ vz, where y1 : 1 = R" and vy, : I, —
R™ are reqular parametric curves, then y, ~ y1 as well. Since we assume y; ~ Yz, the
corresponding (bijective) change of variables ¢ : Iy < I satisfies y,(d(t)) = yi(t) for all
t € Iy, with both ¢ and ¢~ being smooth. A direct substitution then yields

b (1) =v2(t), tel.

Moreover, ¢~ is clearly a bijection between I, and I;, and both ¢~' and its inverse ¢ are

already known to be smooth. Thus, vy, is a reparametrisation of vy, that is, y; ~ y;.

Finally, to show ~ is transitive, we must show that if yv; ~ v, and vy, ~y3, where y; and y;
are as before, and where y3 : I3 = R™ is a regular parametric curve, then y; ~vy3. Now, let

b12: 1 & I; and ¢y3 : [ & I3 denote the corresponding changes of variables, satisfying

Y2(Pr2(t)) =vi(t), tel, Y3(P(s)) =va(s), sely

and let ¢13 be the composition &a3 o d1; of ba3 with ;. Then, ¢q3 is a bijection between
[; and I3, and by the chain rule, both ¢3 = $23 o 12 and its inverse (b]’; = (131’21 o cl);; are

smooth. Furthermore, a direct computation yields that

Y3(Pi3(t)) = va(bas(Pr2(t))) = va(dr2(t)) =vat), tely.

Combining all the above, we conclude that y; is a reparametrisation of y3, and thus y; ~ v;.
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