
MTH5113 (Winter 2022): Problem Sheet 3
Solutions

(1) (Warm-up)

(a) Compute the integral ∫ 1

0

f(x)dx,

where f is the real-valued function

f : R → R, f(x) = 1+ x+ x2 + x3.

(b) Compute the integral ∫π

−π

g(t)dt,

where g is the real-valued function

g : R → R, g(t) = sin t cos t.

(c) Compute the double integral x
R

hdA,

where R is the rectangle [0, 5]× [0, 1], and where h is the function

h : R2 → R, h(x, y) = e2x + exey.

(a) Notice that f is the derivative of the function

F : R → R, F(x) = x+
1

2
x2 +

1

3
x3 +

1

4
x4,

that is, F ′(x) = f(x) for every x ∈ R. Thus, by the fundamental theorem of calculus,∫ 1

0

f(x)dx =

∫ 1

0

F ′(x)dx

= F(1) − F(0)
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=

(
1+

1

2
· 12 + 1

3
· 13 + 1

4
· 14

)
−

(
0+

1

2
· 02 + 1

3
· 03 + 1

4
· 04

)
=

25

12
.

(b) The easiest method is to recall the trigonometric identity

g(t) = sin t cos t = 1

2
sin(2t), t ∈ R.

Noting that g is the derivative of the function

G(t) = −
1

4
cos(2t),

the fundamental theorem of calculus then yields∫π

−π

g(t)dt =

[
−
1

4
cos(2t)

]∣∣∣∣x=π

x=−π

= −
1

4
cos(2π) + 1

4
cos(−2π) = 0.

Alternatively, if you do not remember the double angle formula, you can also integrate g by
substitution. In particular, applying the change of variables

u = sin t, du = cos t dt,

we then obtain ∫π

−π

g(t)dt =

∫π

−π

sin t cos t dt =
∫ 0

0

udu = 0.

In particular, we noticed that t = ±π both corresponded to u = 0.

(c) First, we apply Fubini’s theorem to write the double integral as

x
R

hdA =

∫ 5

0

[∫ 1

0

(e2x + exey)dy

]
dx.

To evaluate the inner integral, we treat x as a constant and integrate with respect to y:

x
R

hdA =

∫ 5

0

(
e2xy+ exey

)∣∣y=1

y=0
dx

=

∫ 5

0

[e2x + (e− 1)ex]dx.
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The remaining integral can also be computed directly:

x
R

hdA =

[
1

2
e2x + (e− 1)ex

]x=5

x=0

=

[
1

2
e10 + (e− 1)e5

]
−

[
1

2
+ (e− 1)

]
=

1

2
e10 + e6 − e5 − e+

1

2
.

One can also integrate in the reverse order:

x
R

hdA =

∫ 1

0

[∫ 5

0

(e2x + exey)dx

]
dy

=

∫ 1

0

(
1

2
e10 + e5ey −

1

2
− ey

)
dy

=
1

2
e10 + e6 − e5 − e+

1

2
.

Both methods yield the same answer.

(2) (Warm-up)

(a) Consider the function

V : R2 \ {(0, 0)} → R, V(x, y) = ln(x2 + y2).

(i) Compute the gradient ∇V(x, y) for each (x, y) ∈ R2 \ {(0, 0)}.

(ii) Find ∇V(3, 4) and ∇V(−5, 12).

(b) Consider the function

w : R3 → R, w(x, y, z) = xy+ xz+ yz.

(i) Compute the gradient ∇w(x, y, z) for each (x, y, z) ∈ R3.

(ii) Find ∇w(−1, 1, 6).

(a) These are direct computations using the definition of the gradient:
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(i) First, we compute the partial derivatives of V . Using the chain rule yields

∂1V(x, y) =
1

x2 + y2
· ∂x(x

2 + y2) =
2x

x2 + y2
,

∂2V(x, y) =
1

x2 + y2
· ∂y(x

2 + y2) =
2y

x2 + y2
.

Thus, by definition, the gradient of V , at any nonzero (x, y) ∈ R2, is

∇V(x, y) = (∂1V(x, y), ∂2V(x, y))(x,y) =

(
2x

x2 + y2
,

2y

x2 + y2

)
(x,y)

.

(ii) Here, we plug in the appropriate values for x and y:

∇V(3, 4) =

(
2 · 3

32 + 42
,

2 · 4
32 + 42

)
(3,4)

=

(
6

25
,
8

25

)
(3,4)

,

∇V(−5, 12) =

(
2 · (−5)

52 + 122
,

2 · 12
52 + 122

)
(−5,12)

=

(
−

10

169
,
24

169

)
(−5,12)

.

(b) These are again direct computations:

(i) Taking partial derivatives, we obtain

∂1w(x, y, z) = y+ z, ∂2w(x, y, z) = x+ z, ∂3w(x, y, z) = x+ y.

Thus, the gradient of w, at any (x, y, z) ∈ R3, is given by

∇w(x, y, z) = (y+ z, x+ z, x+ y)(x,y,z).

(ii) Here, we plug in the appropriate values for x, y, and z:

∇w(−1, 1, 6) = (1+ 6,−1+ 6,−1+ 1)(−1,1,6) = (7, 5, 0)(−1,1,6).

(3) (Warm-up) Are the following parametric curves regular?

(a) Quartic function:
a : R → R3, a(t) = (t, 0, t4).
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(b) No idea what to call this thing:

b : R → R2, b(t) = ((t− 1)3, e(t−1)2).

(c) Lemniscate of Gerono:

c : R → R2, c(t) = (cos t, sin t cos t).

(a) To check whether a is regular, we compute its derivative for each t ∈ R:

a ′(t) = (1, 0, 4t3).

In particular, a ′(t) never vanishes (since its x-component is always 1), hence |a ′(t)| is every-
where non-zero. Thus, by definition, a is regular.

We can also check |a ′(t)| ̸= 0 directly—in particular,

|a ′(t)| =
√

1+ 16t6 ≥
√
1 = 1 ̸= 0, t ∈ R,

since 16t6 is always non-negative.

(b) We begin by differentiating b (via the power and chain rules):

b ′(t) = (3(t− 1)2, 2(t− 1)e(t−1)2).

Note in particular that

b ′(1) = (3(1− 1)2, 2(1− 1)e(1−1)2) = (0, 0), |b ′(1)| = 0.

As a result, b is not regular.

(c) Differentiating c using the product rule, we obtain

c ′(t) = (− sin t, cos2 t− sin2 t) = (− sin t, 1− 2 sin2 t),

where in the last step, we used that cos2 t+ sin2 t = 1.
Observe that given any t ∈ R, whenever the x-component of c ′(t) vanishes (that is,

sin t = 0), the y-component of c ′(t) is 1− 2 sin2 t = 1 ̸= 0 and hence is nonzero. As a result,
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c ′(t) can never vanish for any t ∈ R, and thus c is regular.

(4) [Marked] Let g be the function

f : R3 → R, f(x, y, z) = xy2z3,

and let C denote the region

C = {(x, y, z) ∈ R3 | 0 ≤ z ≤ y, 0 ≤ y ≤ x, 0 ≤ x ≤ 1}.

(a) Sketch the region C.

(b) Compute the triple integral y
C

f dV .

(a) A sketch of the solid region C is given below: [1 mark for mostly correct sketch]

0.5

1

−0.2
0.2

0.4
0.6

0.8 1
1.2

0.5

1

x

y

(b) We first apply Fubini’s theorem to decompose

y
C

f dV =

∫ 1

0

∫ x

0

∫y

0

xy2z3 dzdydx =

∫ 1

0

x

∫ x

0

y2

∫y

0

z3 dzdydx. [1 mark]
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The inner integral can now be computed using the fundamental theorem of calculus:

y
C

f dV =

∫ 1

0

x

∫ x

0

(
y2 · 1

4
y4

)
dydx =

1

4

∫ 1

0

x

∫ x

0

y6dydx.

The remaining integrals can be similarly computed:

y
C

f dV =
1

4

∫ 1

0

(
x · 1

7
x7
)
dx =

1

28

∫ 1

0

x8 dx =
1

252
.

[2 marks for mostly correct computation]

(5) [Tutorial] Answer the following:

(a) Let f be the function
f : R2 → R, f(x, y) = x2y,

and let D denote the triangular region

D = {(x, y) ∈ R2 | 0 ≤ y ≤ 1, |x| ≤ y}.

(i) Sketch the region D on a Cartesian plane.

(ii) Compute the double integral x
D

f dA.

(b) Let Q denote the region

Q = {(x, y, z) ∈ R3 | 0 ≤ x ≤ y+ z, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1}.

(i) Sketch the region Q (or at least, do the best you can).

(ii) Use a triple integral to compute the volume of Q.

(a) A sketch of D is below (D is the green region):
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y

To compute the double integral, we apply Fubini’s theorem (to a rectangular region
containing D, and to a function that is equal to f on D and vanishes outside D):

x
D

f dA =

∫ 1

0

[∫y

−y

x2ydx

]
dy.

To evaluate the inner integral, we apply the fundamental theorem of calculus:

x
D

f dA =
1

3

∫ 1

0

y(x3)|x=y
x=−ydy =

2

3

∫ 1

0

y4dy.

Applying the fundamental theorem of calculus again to the remaining integral yields

x
D

f dA =
2

3
· 1
5
y5

∣∣∣∣y=1

y=0

=
2

15
.

(b) A sketch of the solid region Q is given below:

8



−0.5

0.5

1

1.5

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.5

0.5

1

1.5

x

y

To compute the volume of Q, we first apply Fubini’s theorem to decompose

V(Q) =
y
Q

1 dV =

∫ 1

0

∫ 1

0

∫y+z

0

dxdydz.

The iterated integrals can now be computed using the fundamental theorem of calculus:

V(Q) =

∫ 1

0

∫ 1

0

(y+ z)dydz

=

∫ 1

0

(
1

2
+ z

)
dz

= 1.

(6) (Fun with cycloids) Consider the parametric curve

c : R → R2, c(t) = (t− sin t, 1− cos t).

(The path mapped out by c is known as a cycloid.)

(a) Show that c is not regular. At which t ∈ R do the values |c ′(t)| vanish?
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(b) Plot the image of c using a computer (see the links on the QMPlus page). What
happens at the points c(t) along the plot at which |c ′(t)| = 0?

(a) Taking a derivative of c yields

c ′(t) = (1− cos t, sin t).

Taking the norm of the above, we see that

|c ′(t)| =
√

(1− cos t)2 + sin2 t

=
√

1− 2 cos t+ cos2 t+ sin2 t

=
√
2− 2 cos t.

In particular, note that |c ′(t)| vanishes whenever cos t = 1.
Recalling the basic properties of the cosine function, we conclude that |c ′(t)| vanishes

whenever t = 2kπ for any integer k. In particular, c fails to be regular.

(b) A computer plot of the values of c is given below:

−12 −10 −8 −6 −4 −2 2 4 6 8 10 12

1

2

x

y

c

The points on the plot at which c ′ vanishes are marked in green. At these points, the
plot contains a “jagged edge” in which the direction of the path changes instantaneously.

(7) (More parametric curves) For each of the following parametric curves γ: (i) sketch, with
the help of a computer, the image of γ, and (ii) determine whether γ is regular.

(a) Cissoid of Diocles:

γ : R → R2, γ(t) =

(
t2

1+ t2
,

t3

1+ t2

)
.

(b) Witch of Agnesi:

γ : R → R2, γ(t) =

(
t,

1

1+ t2

)
.
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(c) Tricuspoid:

γ : R → R2, γ(t) = (2 cos t+ cos(2t), 2 sin t− sin(2t)).

(a) First, we differentiate γ using the quotient rule:

γ ′(t) =

(
d

dt

(
t2

1+ t2

)
,
d

dt

(
t3

1+ t2

))
=

(
(1+ t2) · 2t− t2 · 2t

(1+ t2)2
,
(1+ t2) · 3t2 − t3 · 2t

(1+ t2)2

)
=

(
2t

(1+ t2)2
,
t4 + 3t2

(1+ t2)2

)
.

Note in particular that

γ ′(0) =

(
2 · 0

(1+ 02)2
,
04 + 3 · 02

(1+ 0)2

)
= (0, 0).

As a result, γ is not regular.

(b) Differentiating γ yields, for each t ∈ R,

γ ′(t) =

(
1, −

2t

(1+ t2)2

)
.

In particular, observe that γ ′(t) ̸= (0, 0) for any t ∈ R, since the x-component of γ ′(t) is
never vanishes. Thus, γ is regular.

(c) First, differentiating γ yields

γ ′(t) = (−2 sin t− 2 sin(2t), 2 cos t− 2 cos(2t)).

Observe in particular that,

γ ′(0) = (−2 · 0− 2 · 0, 2 · 1− 2 · 1) = (0, 0),

and hence γ fails to be regular.

11



If you cannot see the above directly, you can also try to directly solve the system

−2 sin t− 2 sin(2t) = 0, 2 cos t− 2 cos(2t) = 0. (1)

Using some trigonometric identities, the first equation of (1) can be rearranged as

− sin t = sin(2t) = 2 sin t cos t,

which is satisfied if and only if cos t = − 1
2

or sin t = 0. One specific solution of this is t = 0,
which you can then check also satisfies the second equation in (1). (Other values of t that
also solve both equations in (1) include t = 2π

3
and t = 4π

3
.)

(8) (Reparametrise my hyperbola!) Consider the following parametric curves:

a : R → R2, a(t) = (cosh t, sinh t),

b : R → R2, b(t) =
(√

1+ t2, t
)

.

(a) Sketch the image of b.

(b) Show that both a and b are regular.

(c) Show that a(t) = b(sinh t) for any t ∈ R. According to definition, what else must you
to show in order to demonstrate that a and b are reparametrisations of each other?

(d) Finish what you started in (c)—show that a and b are reparametrisations of each other.
(You will not need advanced knowledge, but you will have to be extra resourceful.)

(a) A sketch of the image of b is found below:

12



−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

x

b

(b) First, for a, we recall the derivative formulas for cosh and sinh:

a ′(t) = (sinh t, cosh t), t ∈ R.

Recalling the identity cosh2 t− sinh2 t = 1, we obtain, for each t ∈ R,

|a ′(t)| =
√

sinh2 t+ cosh2 t =
√
1+ 2 sinh2 t ≥

√
1 > 0,

and it follows that a is indeed regular.
Similarly, for b, we differentiate:

b ′(t) =

(
t√

1+ t2
, 1

)
.

Since the y-component of b ′(t) never vanishes, it follows that b is regular.

(c) Using again that cosh2 t− sinh2 t = 1, we compute

b(sinh t) =
(√

1+ sinh2 t, sinh t
)
=

(√
cosh2 t, sinh t

)
= (cosh t, sinh t) = a(t),

where in the second to last step, we recalled that cosh t is always positive.
To show that a and b are reparametrisations of each other, we must show, in addition
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to the above, that the change of variables ϕ(t) = sinh t satisfies: (i) ϕ is smooth, (ii) ϕ is a
bijection between R and itself, and (iii) its inverse ϕ−1 is smooth.

(d) First, note that ϕ is smooth since

ϕ(t) = sinh t =
1

2
(et − e−t),

and the exponential functions on the right-hand side are clearly smooth.
Next, we recall that ϕ is always strictly increasing, since for any t ∈ R,

ϕ ′(t) = cosh t =
1

2
(et + e−t) > 0.

In particular, if t < t ′, then ϕ(t) < ϕ(t ′). Thus, it follows that ϕ is injective.
Now, consider any s ∈ R, and let us try to solve

sinh t = ϕ(t) = s.

Consulting Google Applying some really clever algebraic manipulations, the above becomes

s =
1

2
(et − e−t), (et)2 − 2s · et − 1 = 0,

and the quadratic formula yields

et = s±
√
s2 + 1.

Since s+
√
s2 + 1 > 0 (for any s ∈ R), we can take its logarithm, and hence

t = ln
(
s+

√
s2 + 1

)
solves the equation ϕ(t) = s. In particular, ϕ is surjective onto R. Moreover, since ϕ is
injective and surjective, it follows that ϕ is a bijection between R and itself.

Finally, the above derivation also gives a formula for the inverse of ϕ:

ϕ−1(s) = ln
(
s+

√
s2 + 1

)
.

Since s +
√
s2 + 1 > 0 for all s ∈ R, and since ln is infinitely differentiable as long as its

input is positive, it follows that ϕ−1 is smooth.
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(9) (Numbers, Sets, and Functions revisited) Let P denote the set of all regular parametric
curves in Rn. Given any two γ1, γ2 ∈ P , we write γ1 ∼ γ2 iff γ1 is a reparametrisation of γ2.
Show that this ∼ defines an equivalence relation on P .

To show ∼ is an equivalence relation, we must show ∼ is reflexive, symmetric, and transitive.

First, to show ∼ is reflexive, we must show that γ ∼ γ for any γ ∈ P . To see this, we simply
note that if γ : I → Rn, then the identity function on I,

ϕ0 : I → I, ϕ(t) = t,

trivially satisfies γ(ϕ0(t)) = γ(t) for all t ∈ I. Moreover, clearly ϕ0 is a bijection between I

and itself, and both ϕ0 and its inverse (which is equal to ϕ0) are smooth as well. Thus, by
definition, γ is a reparametrisation of itself, and hence γ ∼ γ.

Next, to show symmetry, we must show that if γ1 ∼ γ2, where γ1 : I1 → Rn and γ2 : I2 →
Rn are regular parametric curves, then γ2 ∼ γ1 as well. Since we assume γ1 ∼ γ2, the
corresponding (bijective) change of variables ϕ : I1 ↔ I2 satisfies γ2(ϕ(t)) = γ1(t) for all
t ∈ I1, with both ϕ and ϕ−1 being smooth. A direct substitution then yields

γ1(ϕ
−1(t)) = γ2(t), t ∈ I2.

Moreover, ϕ−1 is clearly a bijection between I2 and I1, and both ϕ−1 and its inverse ϕ are
already known to be smooth. Thus, γ2 is a reparametrisation of γ1, that is, γ2 ∼ γ1.

Finally, to show ∼ is transitive, we must show that if γ1 ∼ γ2 and γ2 ∼ γ3, where γ1 and γ2

are as before, and where γ3 : I3 → Rn is a regular parametric curve, then γ1 ∼ γ3. Now, let
ϕ12 : I1 ↔ I2 and ϕ23 : I2 ↔ I3 denote the corresponding changes of variables, satisfying

γ2(ϕ12(t)) = γ1(t), t ∈ I1, γ3(ϕ23(s)) = γ2(s), s ∈ I2,

and let ϕ13 be the composition ϕ23 ◦ ϕ12 of ϕ23 with ϕ12. Then, ϕ13 is a bijection between
I1 and I3, and by the chain rule, both ϕ13 = ϕ23 ◦ ϕ12 and its inverse ϕ−1

13 = ϕ−1
12 ◦ ϕ−1

23 are
smooth. Furthermore, a direct computation yields that

γ3(ϕ13(t)) = γ3(ϕ23(ϕ12(t))) = γ2(ϕ12(t)) = γ1(t), t ∈ I1.

Combining all the above, we conclude that γ1 is a reparametrisation of γ3, and thus γ1 ∼ γ3.
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